A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cardiac Fibroblast GRK2 Deletion Enhances Contractility and Remodeling Following Ischemia/Reperfusion Injury. | LitMetric

Cardiac Fibroblast GRK2 Deletion Enhances Contractility and Remodeling Following Ischemia/Reperfusion Injury.

Circ Res

From the Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (M.C.W., B.P.W., E.G., A.Y., W.J.K.); and Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China (A.Y.).

Published: October 2016

Rationale: G protein-coupled receptor kinase 2 (GRK2) is an important molecule upregulated after myocardial injury and during heart failure. Myocyte-specific GRK2 loss before and after myocardial ischemic injury improves cardiac function and remodeling. The cardiac fibroblast plays an important role in the repair and remodeling events after cardiac ischemia; the importance of GRK2 in these events has not been investigated.

Objective: The aim of this study is to elucidate the in vivo implications of deleting GRK2 in the cardiac fibroblast after ischemia/reperfusion injury.

Methods And Results: We demonstrate, using Tamoxifen inducible, fibroblast-specific GRK2 knockout mice, that GRK2 loss confers a protective advantage over control mice after myocardial ischemia/reperfusion injury. Fibroblast GRK2 knockout mice presented with decreased infarct size and preserved cardiac function 24 hours post ischemia/reperfusion as demonstrated by increased ejection fraction (59.1±1.8% versus 48.7±1.2% in controls; P<0.01). GRK2 fibroblast knockout mice also had decreased fibrosis and fibrotic gene expression. Importantly, these protective effects correlated with decreased infiltration of neutrophils to the ischemia site and decreased levels of tumor necrosis factor-α expression and secretion in GRK2 fibroblast knockout mice.

Conclusions: These novel data showing the benefits of inhibiting GRK2 in the cardiac fibroblast adds to previously published data showing the advantage of GRK2 ablation and reinforces the therapeutic potential of GRK2 inhibition in the heart after myocardial ischemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5085864PMC
http://dx.doi.org/10.1161/CIRCRESAHA.116.309538DOI Listing

Publication Analysis

Top Keywords

cardiac fibroblast
12
grk2
8
fibroblast grk2
8
ischemia/reperfusion injury
8
grk2 loss
8
cardiac function
8
grk2 knockout
8
knockout mice
8
cardiac
6
grk2 deletion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!