The host response to biomaterials is a critical determinant of their success or failure in tissue-repair applications. Macrophages are among the first responders in the host response to biomaterials and have been shown to be predictors of downstream tissue remodeling events. Biomaterials composed of mammalian extracellular matrix (ECM) in particular have been shown to promote distinctive and constructive remodeling outcomes when compared to their synthetic counterparts, a property that has been largely attributed to their ability to modulate the host macrophage response. ECM bioscaffolds are prepared by decellularizing source tissues such as dermis and small intestinal submucosa. The differential ability of such scaffolds to influence macrophage behavior has not been determined. The present study determines the effects of ECM bioscaffolds derived from eight different source tissues upon macrophage surface marker expression, protein content, phagocytic capability, metabolism, and antimicrobial activity. The results show that macrophages exposed to small intestinal submucosa (SIS), urinary bladder matrix (UBM), brain ECM (bECM), esophageal ECM (eECM), and colonic ECM (coECM) express a predominant M2-like macrophage phenotype, which is pro-remodeling and anti-inflammatory (iNOS-/Fizz1+/CD206+). In contrast, macrophage exposure to dermal ECM resulted in a predominant M1-like, pro-inflammatory phenotype (iNOS+/Fizz1-/CD206-), whereas liver ECM (LECM) and skeletal muscle ECM (mECM) did not significantly change the expression of these markers. All solubilized ECM bioscaffold treatments resulted in an increased macrophage antimicrobial activity, but no differences were evident in macrophage phagocytic capabilities, and macrophage metabolism was decreased following exposure to UBM, bECM, mECM, coECM, and dECM. The present work could have important implications when considering the macrophage response following ECM implantation for site-appropriate tissue remodeling. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 138-147, 2017.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.35894DOI Listing

Publication Analysis

Top Keywords

source tissues
12
ecm
11
macrophage
10
extracellular matrix
8
bioscaffolds derived
8
influence macrophage
8
macrophage phenotype
8
host response
8
response biomaterials
8
tissue remodeling
8

Similar Publications

This scoping review summarizes two emerging electrical impedance technologies: electrical impedance myography (EIM) and electrical impedance tomography (EIT). These methods involve injecting a current into tissue and recording the response at different frequencies to understand tissue properties. The review discusses basic methods and trends, particularly the use of electrodes: EIM uses electrodes for either injection or recording, while EIT uses them for both.

View Article and Find Full Text PDF

The growing threat of antimicrobial resistance (AMR) has underlined the need for a sustained supply of novel antimicrobial agents. Endophyte microorganism that reside within plant tissues as symbionts have been the source of potential antimicrobial substances. However, many novel and potent antimicrobials are yet to be discovered from these endophytes.

View Article and Find Full Text PDF

Adenoid hypertrophy (AH) is characterized by pathological hyperplasia of the nasopharyngeal tonsils, a component of Waldryer's ring, which represents the first immune defense of the upper respiratory tract. The pathogenic factors contributing to AH remain to be comprehensively investigated to date. Although some studies suggest that environmental exposure to smoke and allergens, respiratory tract infections, and hormonal influences likely contribute to the development of AH, further research is necessary for fully elucidating the effects of these factors on the onset and progression of AH.

View Article and Find Full Text PDF

The role of farmed animals in the viral spillover from wild animals to humans is of growing importance. Between July and September of 2023 infectious disease outbreaks were reported on six Arctic fox () farms in Shandong and Liaoning provinces, China, which lasted for 2-3 months and resulted in tens to hundreds of fatalities per farm. Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) was identified in tissue/organ and swab samples from all the 13 foxes collected from these farms.

View Article and Find Full Text PDF

Significant dehydration can increase thermoregulatory and cardiovascular strain and impair physical and cognitive performance. Despite these negative effects, there are currently no objective, non-invasive tools to monitor systemic hydration. Raman spectroscopy is an optical modality with the potential to fill this gap because it is sensitive to water, provides results quickly, and can be applied non-invasively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!