A key pathology of Alzheimer's disease (AD) is amyloid β (Aβ) accumulation that triggers synaptic impairments and neuronal death. Metabolic disruption is common in AD and recent evidence implicates impaired leptin function in AD. Thus the leptin system may be a novel therapeutic target in AD. Indeed, leptin has cognitive enhancing properties and it prevents the aberrant effects of Aβ on hippocampal synaptic function and neuronal viability. However, as leptin is a large peptide, development of smaller leptin-mimetics may be the best therapeutic approach. Thus, we have examined the cognitive enhancing and neuroprotective properties of known bioactive leptin fragments. Here we show that the leptin (116-130) fragment, but not leptin (22-56), mirrored the ability of leptin to promote AMPA receptor trafficking to synapses and facilitate activity-dependent hippocampal synaptic plasticity. Administration of leptin (116-130) also mirrored the cognitive enhancing effects of leptin as it enhanced performance in episodic-like memory tests. Moreover, leptin (116-130) prevented hippocampal synaptic disruption and neuronal cell death in models of amyloid toxicity. These findings establish further the importance of the leptin system as a therapeutic target in AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433184 | PMC |
http://dx.doi.org/10.1093/cercor/bhw272 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!