We aimed to study the impact of altered thyroid status on myocardial expression of electrical coupling protein connexin-43 (Cx43), the susceptibility of rats to ventricular fibrillation (VF) and the effects of antioxidant-rich red palm oil (RPO). Adult male and female euthyroid, hyperthyroid (treated with T/T), hypothyroid (treated with methimazole) Wistar rats supplemented or not with RPO for 6 weeks were used. Function of isolated perfused heart and VF threshold were determined. Left ventricular tissue was used for assessment of mRNA and protein levels of Cx43, its phosphorylated forms and topology. Protein kinase C signaling (PKC) and gene transcripts of some proteins related to cardiac arrhythmias were assessed. Hyperthyroid state resulted in decrease of total and phosphorylated forms of Cx43 and suppression of PKC-ε expression in males and females, decrease of Cx43 mRNA in females, decrease of VF threshold and increase of functional parameters in male rat hearts. In contrast, hypothyroid status resulted in the increase of total and phosphorylated forms of Cx43, enhancement PKC-ε expression in males and females, increase of Cx43 mRNA in females, increase of VF threshold and decrease of functional parameters in male rat hearts. Function of the heart was partially normalized by RPO intake, which also enhanced myocardial Cx43 and PKC-ε expression as well as increased VF threshold in hyperthyroid male rats. We conclude that there is an inverse relationship between myocardial expression of Cx43, including its functional phosphorylated forms, and susceptibility of male rat hearts to VF in condition of altered thyroid status. RPO intake partly ameliorated adverse changes caused by excess of thyroid hormones.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-016-1488-6DOI Listing

Publication Analysis

Top Keywords

phosphorylated forms
16
altered thyroid
12
thyroid status
12
myocardial expression
12
pkc-ε expression
12
male rat
12
rat hearts
12
status myocardial
8
partially normalized
8
red palm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!