Much research debates whether properties of ecological networks such as nestedness and connectance stabilise biological communities while ignoring key behavioural aspects of organisms within these networks. Here, we computationally assess how adaptive foraging (AF) behaviour interacts with network architecture to determine the stability of plant-pollinator networks. We find that AF reverses negative effects of nestedness and positive effects of connectance on the stability of the networks by partitioning the niches among species within guilds. This behaviour enables generalist pollinators to preferentially forage on the most specialised of their plant partners which increases the pollination services to specialist plants and cedes the resources of generalist plants to specialist pollinators. We corroborate these behavioural preferences with intensive field observations of bee foraging. Our results show that incorporating key organismal behaviours with well-known biological mechanisms such as consumer-resource interactions into the analysis of ecological networks may greatly improve our understanding of complex ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ele.12664 | DOI Listing |
Sci Rep
January 2025
Department of Computer Science, College of Computer and Information Sciences, Majmaah University, 11952, Al-Majmaah, Saudi Arabia.
The rapid expansion of IoT networks, combined with the flexibility of Software-Defined Networking (SDN), has significantly increased the complexity of traffic management, requiring accurate classification to ensure optimal quality of service (QoS). Existing traffic classification techniques often rely on manual feature selection, limiting adaptability and efficiency in dynamic environments. This paper presents a novel traffic classification framework for SDN-based IoT networks, introducing a Two-Level Fused Network integrated with a self-adaptive Manta Ray Foraging Optimization (SMRFO) algorithm.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China.
Bermudagrass [Cynodon dactylon (L.) Pers.] is widely used for soil remediation, livestock forage, and as turfgrass for sports fields, parks, and gardens due to its resilience and adaptability.
View Article and Find Full Text PDFMol Plant
December 2024
College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:
Medicago, a member of the Leguminosae or Fabaceae family, encompasses the most significant forage crops globally, notably alfalfa (Medicago sativa L.). Its close diploid relative, Medicago truncatula, serves as an exemplary model plant for investigating leguminous growth and development, as well as its symbiosis with rhizobia.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
The present study focused on the impact of weather parameters over the foraging efficiency and pollination potential of stingless bees, Tetragonula iridipennis in tomato ecosystem which was located in Coimbatore district, Tamil Nadu, India. The maximum foraging activity (outgoing bees - 24.56/5 min, Pollen foragers - 8.
View Article and Find Full Text PDFCommun Biol
December 2024
Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
Social parasites employ diverse strategies to deceive and infiltrate their hosts in order to benefit from stable resources. Although escape behaviours are considered an important part of these multipronged strategies, little is known about the repertoire of potential escape behaviours and how they facilitate integration into the host colony. Here, we investigated the escape strategies of the parasitic ant cricket Myrmecophilus tetramorii Ichikawa (Orthoptera: Myrmecophilidae) toward its host and non-host ant workers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!