Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The environmental coupling of the phycobiliprotein antenna complex PE555 and its excitonic energy transfer mechanisms are studied in detail. Molecular dynamics simulations were performed followed by calculations of the vertical transition energies along the classical ground-state trajectory. To this end, the distributions of energy levels for the PE555 complex were found to be similar to those of the PE545 complex despite the clear differences in the respective protein structures. In the PE555 complex the two αβ monomers are rotated by ∼73° compared to the PE545 structure leading to a water filled channel. Moreover, the connections between the bilins, which act as pigments in these aggregates, and the protein show clear differences in the two structures. Analyzing the coupling of the individual chromophores to the protein environment, however, yielded similar spectral densities in the two protein complexes. In addition, the partial transition charges of the involved bilins have been determined in order to calculate the electronic couplings using the transition charges from electrostatic potentials (TrEsp) method. For comparison purposes, the couplings have been extracted using the point-dipole approximation as well. On average the coupling values predicted by the dipole approximation are slightly larger than those from the TrEsp method leading to enhanced population decay rates as tested in ensemble-averaged wave packet dynamics. Moreover, the exciton dynamics in the PE555 structure is significantly slower than in the PE545 complex due to the smaller coupling values induced by the dissimilar arrangements of the monomers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.6b05803 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!