Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation.

Sci Rep

Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha, 410081, P.R. China.

Published: September 2016

In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013320PMC
http://dx.doi.org/10.1038/srep32712DOI Listing

Publication Analysis

Top Keywords

wo3 nanowire
16
hydrogen ions
16
memristive performance
12
ions will
8
performance characterized
8
resistive switching
8
bias voltage
8
voltage swept
8
relative humidity
8
hxwo3 nanowire
8

Similar Publications

Addressing the sluggish redox kinetics of sulfur electrodes and mitigating the shuttle effect of intermediate lithium polysulfides (LiPS) are crucial for the advancement of high-energy lithium-sulfur batteries. Here, we introduce a pioneering flexible self-supporting composite scaffold that incorporates tungsten oxide nanowire clusters anchored on core-shell porous carbon fibers (WO/PCF) for sulfur accommodation. The core of PCF serves as a robust electrode supporting scaffold, whereas the porous shell of PCF provides a 3D interconnected conductive network to accommodate sulfur, restrain polysulfide diffusion and buffer electrode expansion.

View Article and Find Full Text PDF

Detecting hydrogen sulfide (HS) odor gas in the environment at parts-per-billion-level concentrations is crucial. However, a significant challenge is the rapid deactivation caused by SO deposition. To address this issue, we developed a sensing material comprising FeO-decorated WO nanowires (FWO) with strong interfacial interaction.

View Article and Find Full Text PDF

Solvothermal synthesis of 1D n-InO@n-WO heterojunction nanowires (HNWs) and their NO gas sensing characteristics are reported. The n-InO@n-WO HNWs have been well-characterised using XRD, Raman spectroscopy, XPS, SEM and HRTEM analyses. The NO sensing performance of n-InO@n-WO HNWs showed superior performance compared with pristine WO NWs.

View Article and Find Full Text PDF

Fast and accurate detection of light in the near-infrared (NIR) spectral range plays a crucial role in modern society, from alleviating speed and capacity bottlenecks in optical communications to enhancing the control and safety of autonomous vehicles through NIR imaging systems. Several technological platforms are currently under investigation to improve NIR photodetection, aiming to surpass the performance of established III-V semiconductor p-i-n (PIN) junction technology. These platforms include-grown inorganic nanocrystals (NCs) and nanowire arrays, as well as hybrid organic-inorganic materials such as graphene-perovskite heterostructures.

View Article and Find Full Text PDF
Article Synopsis
  • Superbug infections pose a major global health threat, and this research presents a solution using a specialized nanowire-based system enhanced with gold nanoparticles to effectively eliminate these bacteria using sunlight.
  • The approach combines photothermal and photocatalytic techniques, achieving complete eradication of carbapenem-resistant Enterobacteriaceae (CRE) and methicillin-resistant Staphylococcus aureus (MRSA) in just 60 minutes of sunlight exposure.
  • The enhanced performance is attributed to the ability of the gold nanoparticles to absorb light at a specific wavelength (670 nm), which not only increases the photocatalyst's efficiency but also raises the surface temperature, thereby facilitating more effective degradation of bacteria and dyes like methylene blue (MB).
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!