Evidence of sexual dimorphism in D1 and D2 dopaminergic receptors expression in frontal cortex and striatum of young rats.

Neurochem Int

Laboratorio de Neurofisiología y Neuroquímica, Depto. de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez #2100, Las Agujas, Zapopan, Jalisco, C.P. 44600, México.

Published: November 2016

D1 and D2 receptors are key mediators of dopaminergic signaling in the brain, and since the manifestations of pathologies related to dopamine are different in female and male patients, it is important to analyze if there are sex-related differences in dopaminergic markers. To contribute to the knowledge in this regard, the objective of this report was to characterize the particular expression level of D1 and D2 dopamine receptors in young male and female rats. Striatum (STR) and frontal cortex (CTX) were obtained from intact 30-days old animals, and the D1 and D2 expression level was analyzed by Western blot. The results show a greater expression of D1, but less of D2, in female CTX compared with males, whereas in STR, both D1 and D2 receptors shows predominance in females. These results support the evidence of dimorphic expression in dopaminergic markers, outside of the sex-related brain nuclei, and suggests an early effect of hormones in establishing long life characteristics in dopaminergic circuits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2016.09.001DOI Listing

Publication Analysis

Top Keywords

frontal cortex
8
dopaminergic markers
8
expression level
8
dopaminergic
5
expression
5
evidence sexual
4
sexual dimorphism
4
dimorphism dopaminergic
4
receptors
4
dopaminergic receptors
4

Similar Publications

Obstructive sleep apnea and structural and functional brain alterations: a brain-wide investigation from clinical association to genetic causality.

BMC Med

January 2025

Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China.

Background: Obstructive sleep apnea (OSA) is linked to brain alterations, but the specific regions affected and the causal associations between these changes remain unclear.

Methods: We studied 20 pairs of age-, sex-, BMI-, and education- matched OSA patients and healthy controls using multimodal magnetic resonance imaging (MRI) from August 2019 to February 2020. Additionally, large-scale Mendelian randomization analyses were performed using genome-wide association study (GWAS) data on OSA and 3935 brain imaging-derived phenotypes (IDPs), assessed in up to 33,224 individuals between December 2023 and March 2024, to explore potential genetic causality between OSA and alterations in whole brain structure and function.

View Article and Find Full Text PDF

Topographical Mapping of Metabolic Abnormalities in Multiple Sclerosis using Rapid Echo-less 3D-MR Spectroscopic Imaging at 7T.

Neuroimage

January 2025

High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.

Objectives: To assess topographical patterns of metabolic abnormalities in the cerebrum of multiple sclerosis (MS) patients and their relationship to clinical disability using rapid echo-less 3D-MR spectroscopic imaging (MRSI) at 7T.

Materials And Methods: This study included 26 MS patients (13 women; median age 34) and 13 age- and sex-matched healthy controls (7 women; median age 33). Metabolic maps were obtained using echo-less 3D-MRSI at 7T with a 64 × 64 × 33 matrix and a nominal voxel size of 3.

View Article and Find Full Text PDF

Backgrounds/objective: Deep brain stimulation (DBS) has proved the viability of alleviating depression symptoms by stimulating deep reward-related nuclei. This study aims to investigate the abnormal connectivity profiles among superficial, intermediate, and deep brain regions within the reward circuit in major depressive disorder (MDD) and therefore provides references for identifying potential superficial cortical targets for non-invasive neuromodulation.

Methods: Resting-state functional magnetic resonance imaging data were collected from a cohort of depression patients (N = 52) and demographically matched healthy controls (N = 60).

View Article and Find Full Text PDF

High definition transcranial direct current stimulation as an intervention for cognitive deficits in Alzheimer's dementia: A randomized controlled trial.

J Prev Alzheimers Dis

February 2025

Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.

Background: Recent disease-modifying treatments for Alzheimer's disease show promise to slow cognitive decline, but show no efficacy towards reducing symptoms already manifested.

Objectives: To investigate the efficacy of a novel noninvasive brain stimulation technique in modulating cognitive functioning in Alzheimer's dementia (AD).

Design: Pilot, randomized, double-blind, parallel, sham-controlled study SETTING: Clinical research site at UT Southwestern Medical Center PARTICIPANTS: Twenty-five participants with clinical diagnoses of AD were enrolled from cognition specialty clinics.

View Article and Find Full Text PDF

The mediating effect of the striatum-based connectivity on the association between high-sensitivity C-reactive protein and anhedonia in adolescent depression.

J Affect Disord

January 2025

Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China. Electronic address:

Background: The potential pairwise connections among high-sensitivity C-reactive protein (hs-CRP), striatum-based circuits, and anhedonia in adolescent depression are not clear. This study aimed to explore whether hs-CRP levels in adolescents with depression influence anhedonia via alterations of striatum-based functional connectivity (FC).

Methods: A total of 201 adolescents (92 with depressive episodes with anhedonia (anDE), 58 with DE without anhedonia (non-anDE), and 51 healthy controls (HCs)) underwent resting-state functional magnetic resonance imaging (fMRI) and completed the anhedonia subscale of the Children's Depression Inventory (CDI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!