Aggressive cancer cells show histological similarities to embryonic stem cells. As differentiated cells can re-acquire pluripotency and self-renewal by transfection with the transcription factors OCT4, SOX2, KLF4 and MYC, with Nanog as readout for success, we comprehensively investigated their occurrence and frequency in human astrocytomas of different malignancy grades, primary and matched recurrent glioblastomas, short- and long-term glioblastoma cultures and glioma cell lines. Among astrocytomas, mRNA expression of OCT4, MYC and (less robust) KLF4 increased with malignancy, while in recurrent glioblastomas MYC expression slightly decreased. Correlation analysis revealed distinct positive correlation between distinct stem cell markers, and this effect was most prominent in the recurrent glioblastoma cohort. In situ, embryonic stem cell factors were found also in more differentiated tumor regions. Respective cells were rarely actively proliferating and showed single or combined expression signatures, which, at least in parts, corresponded to observed positive correlations of mRNA expression. However, a 'master-marker' defining the complete glioma stem cell subset could not be confirmed. In glioma cell lines, long- and short-term cultures, embryonic markers were detected at comparable levels. Upon exposure to temozolomide, increased expression of KLF4 (and lesser Nanog and OCT4) was observed. Experimental intrinsic overexpression of SOX2, KLF4 or OCT4 did not affect the other stem cell factors. The embryonic stem cell factors comprehensively investigated in this project can control self-renewal and pluripotency, and therefore tumorigenicity. They should be considered for the development of future diagnostic and therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2016.3682DOI Listing

Publication Analysis

Top Keywords

stem cell
24
embryonic stem
12
cell factors
12
cell markers
8
sox2 klf4
8
comprehensively investigated
8
recurrent glioblastomas
8
glioma cell
8
cell lines
8
mrna expression
8

Similar Publications

The human skin and oral cavity harbor complex microbial communities, which exist in dynamic equilibrium with the host's physiological state and the external environment. This study investigates the microbial atlas of human skin and oral cavities using samples collected over a 10-month period, aiming to assess how both internal and external factors influence the human microbiome. We examined bacterial community diversity and stability across various body sites, including palm and nasal skin, saliva, and oral epithelial cells, during environmental changes and a COVID-19 pandemic.

View Article and Find Full Text PDF

Background: Radiotherapy is the primary treatment modality for most head and neck cancers (HNCs). Despite the addition of chemotherapy to radiotherapy to enhance its tumoricidal effects, almost a third of HNC patients suffer from locoregional relapses. Salvage therapy options for such recurrences are limited and often suboptimal, partly owing to divergent tumor and microenvironmental factors underpinning radioresistance.

View Article and Find Full Text PDF

Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.

View Article and Find Full Text PDF

Developing novel Lin28 inhibitors by computer aided drug design.

Cell Death Discov

January 2025

The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.

Lin28 is a key regulator of cancer stem cell gene network that promotes therapy-resistant tumor progression in various tumors. However, no Lin28 inhibitor has been approved to treat cancer patients, urging exploration of novel compounds as candidates to be tested for clinical trials. In this contribution, we applied computer-aided drug design (CADD) in combination with quantitative biochemical and biological assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!