Currently, the mechanism governing the regeneration of the soft tissue-to-bone interface, such as the transition between the anterior cruciate ligament (ACL) and bone, is not known. Focusing on the ACL-to-bone insertion, this study tests the novel hypothesis that interactions between cells from the ligament (fibroblasts) and bone (osteoblasts) initiate interface regeneration. Specifically, these heterotypic cell interactions direct the fibrochondrogenic differentiation of interface-relevant cell populations, defined here as ligament fibroblasts and bone marrow stromal cells (BMSC). The objective of this study is to examine the effects of heterotypic cellular interactions on BMSC or fibroblast growth and biosynthesis, as well as expression of fibrocartilage-relevant markers in tri-culture. The effects of cell-cell physical contact and paracrine interactions between fibroblasts and osteoblasts were also determined. It was found that, in tri-culture with fibroblasts and osteoblasts, BMSC exhibited greater fibrochondrogenic potential than ligament fibroblasts. The growth of BMSC decreased while proteoglycan production and TGF-β3 expression increased. Moreover, tri-culture regulated BMSC response via paracrine factors, and interestingly, fibroblast-osteoblast contact further promoted proteoglycan and TGF-β1 synthesis as well as induced SOX9 expression in BMSC. Collectively, the findings of this study suggest that fibroblast-osteoblast interactions play an important role in regulating the stem cell niche for fibrocartilage regeneration, and the mechanisms of these interactions are directed by paracrine factors and augmented with direct cell-cell contact.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388351 | PMC |
http://dx.doi.org/10.1080/03008207.2016.1230106 | DOI Listing |
Periodontol 2000
January 2025
ADA Forsyth Institute, Cambridge, Massachusetts, USA.
Tooth movement is a complex process involving the vascularization of the tissues, remodeling of the bone cells, and periodontal ligament fibroblasts under the hormonal and neuronal regulation mechanisms in response to mechanical force application. Therefore, it will inevitably impact periodontal tissues. Prolonged treatment can lead to adverse effects on teeth and periodontal tissues, prompting the development of various methods to reduce the length of orthodontic treatment.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China. Electronic address:
Ethnopharmacological Relevancy: Danggui Niantong Decoction (DGNTD) is a traditional Chinese medicine compound formula that has been demonstrated to possess efficacy in the treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), as well as for dispelling moisture and relieving pain. As mentioned before, DGNTD is essential for synovial inflammation in RA. The primary features of the OA synovial membrane are low-grade inflammation, hyperplasia with enhanced fibroblast-like synoviocytes (FLS) proliferation, and fibrosis, which can cause pain and stiffness.
View Article and Find Full Text PDFJ Taibah Univ Med Sci
February 2025
Department of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya, Malang, East Java, Indonesia.
Objective: Relapse after orthodontic treatment remains a crucial problem. Pulsed electromagnetic fields (PEMFs) accelerate osteoblastogenesis and inhibit osteoclastogenesis. However, their effect on tooth movement during the retention phase of orthodontic treatment has not been studied.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Department of Periodontology, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al-Khaimah, 30248, United Arab Emirates.
Introduction: Elevated glucose can have a detrimental effect on the function and healing process of periodontal cells in inflammatory conditions. Hesperidin (HPN), a bioflavonoid found abundantly in citrus fruits, has numerous biological benefits, including regenerative and anti-inflammatory properties. The current in-vitro study aimed to assess the impact of HPN on the proliferation, wound healing, and functionality of periodontal cells in optimal and elevated glucose conditions.
View Article and Find Full Text PDFArch Oral Biol
January 2025
Department of Dentistry-Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud university medical center, Philips van Leydenlaan 25, Nijmegen 6525 EX, the Netherlands. Electronic address:
Objectives: To investigate in vivo whether myofibroblasts formed in the PDL after exposure to short-term high experimental orthodontic forces in rats survive. To study in vitro whether human PDL fibroblasts can differentiate into myofibroblasts and survive when chemical or mechanical stimuli are removed.
Design: Nine 6-week-old male Wistar rats were used in this experiment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!