Evidence for tissue diffusion limitation of VO2max in normal humans.

J Appl Physiol (1985)

Department of Medicine, University of California, San Diego, La Jolla 92093.

Published: July 1989

We recently found [at approximately 90% maximal O2 consumption (VO2max)] that as inspiratory PO2 (PIO2) was reduced, VO2 and mixed venous PO2 (PVO2) fell together along a straight line through the origin, suggesting tissue diffusion limitation of VO2max. To extend these observations to VO2max and directly examine effluent venous blood from muscle, six normal men cycled at VO2max while breathing air, 15% O2 and 12% O2 in random order on a single day. From femoral venous, mixed venous, and radial arterial samples, we measured PO2, PCO2, pH, and lactate and computed mean muscle capillary PO2 by Bohr integration between arterial (PaO2) and femoral venous PO2 (PfvO2). VO2 and CO2 production (VCO2) were measured by expired gas analysis, VO2max averaged 61.5 +/- 6.2 (air), 48.6 +/- 4.8 (15% O2), and 38.1 +/- 4.1 (12% O2) ml.kg-1.min-1. Corresponding values were 16.8 +/- 5.6, 14.4 +/- 5.0, and 12.0 +/- 5.0 Torr for PfVO2; 23.6 +/- 3.2, 19.1 +/- 4.2, and 16.2 +/- 3.5 Torr for PVO2; and 38.5 +/- 5.4, 30.3 +/- 4.1, and 24.5 +/- 3.6 Torr for muscle capillary PO2 (PmCO2). Each of the PO2 variables was linearly related to VO2max (r = 0.99 each), with an intercept not different from the origin. Similar results were obtained when the subjects were pushed to a work load 30 W higher to ensure that VO2max had been achieved. By extending our prior observations 1) to maximum VO2 and 2) by direct sampling of femoral venous blood, we conclude that tissue diffusion limitation of VO2max may be present in normal humans. In addition, since PVO2, PfVO2, and PmCO2 all linearly relate to VO2max, we suggest that whichever of these is most readily obtained is acceptable for further evaluation of the hypothesis.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jappl.1989.67.1.291DOI Listing

Publication Analysis

Top Keywords

tissue diffusion
12
diffusion limitation
12
limitation vo2max
12
femoral venous
12
+/-
12
+/- torr
12
vo2max
9
vo2max normal
8
normal humans
8
mixed venous
8

Similar Publications

Mechanism exploration of intestinal mucus penetration of nano-se: Regulated by polysaccharides with different functional groups and molecular weights.

J Control Release

January 2025

State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.

Selenium deficiency associated with a high risk of many diseases remains a global challenge. Owing to the narrow margin between "nutrition-toxicity" doses of selenium, it is imperative to achieve accurate selenium supplement. Nano‑selenium (SeNPs) is a novel form of selenium supplement with low toxicity, but it could be trapped and removed by intestinal mucus, thus limiting its oral delivery.

View Article and Find Full Text PDF

Characterizing the Microstructural Transition at the Gray Matter-White Matter Interface: Implementation and Demonstration of Age-Associated Differences.

Neuroimage

January 2025

Department of Radiology, Columbia University Irving Medical Center, New York, NY; Department of Biomedical Engineering, Columbia University, New York, NY. Electronic address:

Background: The cortical gray matter-white matter interface (GWI) is a natural transition zone where the composition of brain tissue abruptly changes and is a location for pathologic change in brain disorders. While diffusion magnetic resonance imaging (dMRI) is a reliable and well-established technique to characterize brain microstructure, the GWI is difficult to assess with dMRI due to partial volume effects and is normally excluded from such studies.

Methods: In this study, we introduce an approach to characterize the dMRI microstructural profile across the GWI and to assess the sharpness of the microstructural transition from cortical gray matter (GM) to white matter (WM).

View Article and Find Full Text PDF

Background: Intraoperative ultrasound is becoming a common tool in neurosurgery. However, effective simulation methods are limited. Current, commercial, and homemade phantoms lack replication of anatomical correctness and texture complexity of brain and tumour tissue in ultrasound images.

View Article and Find Full Text PDF

Peficitinib suppresses diffuse-type tenosynovial giant cell tumor by targeting TYK2 and JAK/STAT signaling.

Sci China Life Sci

January 2025

Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.

Diffuse-type tenosynovial giant cell tumor (dTGCT) is a destructive but rare benign proliferative synovial neoplasm. Although surgery is currently the main treatment modality for dTGCT, the recurrence risk is up to 50%. Therefore, there is a great need for effective drugs against dTGCT with minor side effects.

View Article and Find Full Text PDF

The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!