1,3-Dipolar Cycloaddition with Diazo Groups: Noncovalent Interactions Overwhelm Strain.

Org Lett

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States.

Published: September 2016

Like azides, diazoacetamides undergo 1,3-dipolar cycloadditions with oxanorbornadienes (OND) in a reaction that is accelerated by the relief of strain in the transition state. The cycloaddition of a diazoacetamide with unstrained ethyl 4,4,4-trifluoro-2-butynoate is, however, 35-fold faster than with the analogous OND because of favorable interactions with the fluoro groups. Its rate constant (k = 0.53 M(-1) s(-1) in methanol) is comparable to those of strain-promoted azide-cyclooctyne cycloadditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148626PMC
http://dx.doi.org/10.1021/acs.orglett.6b01938DOI Listing

Publication Analysis

Top Keywords

13-dipolar cycloaddition
4
cycloaddition diazo
4
diazo groups
4
groups noncovalent
4
noncovalent interactions
4
interactions overwhelm
4
overwhelm strain
4
strain azides
4
azides diazoacetamides
4
diazoacetamides undergo
4

Similar Publications

Photoinduced Energy/Electron Transfer within Single-Chain Nanoparticles.

Angew Chem Int Ed Engl

January 2025

Queensland University of Technology, School of Chemistry and Physics, 2 George Street, 4000, Brisbane, AUSTRALIA.

We demonstrate that single-chain nanoparticles (SCNPs) - compact covalently folded single polymer chains - can increase photocatalytic performance of an embedded catalytic center, compared to the comparable catalytic system in free solution. In particular, we demonstrate that the degree of compaction allows to finely tailor the catalytic activity, thus evidencing that molecular confinement is a key factor in controlling photocatalysis. Specifically, we decorate a linear parent polymer with both photoreactive chalcone moieties as well as Ru(bpy)3 catalytic centers.

View Article and Find Full Text PDF

TMSOTf-mediated 5/6-- hydroalkoxylation followed by the (3 + 2) cycloaddition cascade reaction of hydroxy cyclopropenes with aldehydes gave an expedient, stereoselective synthesis of [5.5]-and [6.5]-spiroketal derivatives.

View Article and Find Full Text PDF

Metal-mediated Protein Engineering within live Cells.

Chem Asian J

December 2024

Humboldt-Universitat zu Berlin, Chemistry, Brook-Taylor Str 2, 12489, Berlin, GERMANY.

Metal mediated several organic reactions are known which can be used inside the cellular medium for protein modifications, eventually for targeting diseases. Indeed, due to ease of handling-rapid solubility-fast cell penetration metals are superior than any other competitor as a stimulus/mediator in organic reactions relevant with protein modifications. Metal mediated most effective reactions as a chemical biology tool are Cu(I)-catalyzed azide-alkyne cycloaddition(CuAAC)/click reactions or Pd mediated multiple chemical reactions for intra/extra cellular protein modifications etc.

View Article and Find Full Text PDF

Transforming an azaarene into the spine of fusedbicyclics via cycloaddition-induced scaffold hopping of 5-Hydroxypyrazoles.

Nat Commun

December 2024

National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China.

Skeleton editing for heteroarenes, especially pyrazoles, is challenging and remains scarce because these non-strained aromatics exhibit inert reactivities, making them relatively inactive for performing a dearomatization/cleavage sequence. Here, we disclose a cycloaddition-induced scaffold hopping of 5-hydroxypyrazoles to access the pyrazolopyridopyridazin-6-one skeleton through a single-operation protocol. By converting a five-membered aza-arene into a five-unit spine of a 6/6 fused-bicyclic, this work unlocks a ring-opening reactivity of the pyrazole core that involves a formal C = N bond cleavage while retaining the highly reactive N-N bond in the resulting product.

View Article and Find Full Text PDF

Aza-[4 + 2]-cycloaddition of benzocyclobutenones into isoquinolinone derivatives enabled by photoinduced regio-specific C-C bond cleavage.

Nat Commun

December 2024

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.

The activation of C-C bond of benzocyclobutenones under mild reaction conditions remains a challenge. We herein report a photoinduced catalyst-free regio-specific C1-C8 bond cleavage of benzocyclobutenones, enabling the generation of versatile ortho-quinoid ketene methides for aza-[4 + 2]-cycloaddition with imines, which offers a facile route to isoquinolinone derivatives, including seven family members of protoberberine alkaloids, gusanlung A, B, D, 8-oxotetrahydroplamatine, tetrahydrothalifendine, tetrahydropalmatine, and xylopinine. Furthermore, the catalytic enantioselective version of this strategy is also realized by merging synergistic photocatalysis and chiral Lewis acid catalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!