A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

SWATH-MS Quantitative Proteomic Investigation Reveals a Role of Jasmonic Acid during Lead Response in Arabidopsis. | LitMetric

Lead (Pb) pollution is a growing environment problem that continuously threatens the productivity of crops. To understand the molecular mechanisms of plant adaptation to Pb toxicity, we examined proteome changes in Arabidopsis seedlings following Pb treatment by SWATH-MS, a label-free quantitative proteomic platform. We identified and quantified the expression of 1719 proteins in water- and Pb-treated plants. Among them, 231 proteins showed significant abundance changes (151 elevated and 80 reduced) upon Pb exposure. Functional categorization revealed that most of the Pb-responsive proteins are involved in different metabolic processes. For example, down-regulation of photosynthesis and biosynthesis of isoprenoids and tetrapyrroles in chloroplasts were observed. On the contrary, pathways leading to glutathione, jasmonic acid (JA), glucosinolate (GSL), and phenylpropanoid production are up-regulated. Experimental characterizations demonstrated a rapid elevation of endogenic JA production in Pb-treated Arabidopsis seedlings, while a JA-deficient mutant and a JA-insensitive mutant showed hypersensitivity to root inhibition by Pb, implicating an essential role of JA during Pb responses. Consistently, methyl jasmonate supplementation alleviated Pb toxicity in the wild-type and JA-deficient mutant. Furthermore, GSL levels were substantially enhanced following Pb treatment, while such induction was not detected in the JA mutant, suggesting that the Pb-induced GSL accumulation is JA-dependent. Overall, our work represents the first SWATH-MS analysis in Arabidopsis and highlights a potential mediating role of JA during Pb stress.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.6b00258DOI Listing

Publication Analysis

Top Keywords

quantitative proteomic
8
jasmonic acid
8
arabidopsis seedlings
8
ja-deficient mutant
8
swath-ms quantitative
4
proteomic investigation
4
investigation reveals
4
reveals role
4
role jasmonic
4
acid lead
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!