Understanding the effects of climate change on crops is vital for food security. We aimed to characterise the coincidence of yield variations with weather variable for potato in northern China using long-term datasets. Daily climate variables obtained from 607 meteorological stations from 1961 to 2014, detailed field experimental data for the period of 1982 to 2012 in northern China, and multivariate linear statistical model were used in this study. In particular, the first difference method was used to disentangle the contributions of climate change to potato yield. We concluded that during the potato growing, the average daily, maximum and minimum temperatures significantly increased by 0.23°C per decade, 0.20°C per decade and 0.36°C per decade from 1961 to 2014 in northern China, respectively. However, average total radiation, total annual precipitation and potential evapotranspiration from April to September all exhibited downward trends, but the variation of evapotranspiration (-9.99mm per decade) was greater than that of precipitation (-2.65mm per decade). The key climatic factors limiting potato yields in northern China over the past 30years at a regional scale were diurnal temperature range, precipitation, radiation and ET. The potato yield in northern China was the most sensitive to variation of the diurnal temperature range followed by radiation, precipitation and reference crop evapotranspiration (ET). Specifically, when the diurnal temperature range decreased 1°C, the potato yield increased 543.9kg·ha. When the total radiation decreased 1MJ·m, the potato yield increased 63.8kg·ha. When the ET decreased 1mm, the potato yield increased 62.7kg·ha. When the precipitation increased 1mm, the potato yield increased 62.9kg·ha. A regression model describing the combined effects of different climate variables on potato yield in northern China was established.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.08.195DOI Listing

Publication Analysis

Top Keywords

potato yield
32
northern china
28
yield increased
16
diurnal temperature
12
temperature range
12
potato
11
yield
9
effects climate
8
climate change
8
climate variables
8

Similar Publications

The growing global demand and shift from synthetic to natural fibers highlight the need to overcome the yield plateau in jute production. Despite being a sustainable alternative to plastic, jute faces declining cultivation, making yield improvement crucial to meet increasing demand. In this direction, the study was designed to explore hybridization and combining ability to improve the genetic yield potential of jute.

View Article and Find Full Text PDF

Obesity is linked to cardiovascular disease, cerebrovascular disease, diabetes, and dyslipidemia, lowering quality of life, work productivity, and healthcare expenditures. The aim of this present study is to investigate the mechanism of potato protein (PP) post-treatment in regulating lipogenesis and lipolysis in 3T3-L1 adipocytes. 9% PP hydrolysed for 2 h (PPH902) shows high yield and better activity; thus, PPH902 was used in all other experiments.

View Article and Find Full Text PDF

Chaetoglobosin A (CheA), a typical structure of the cytochalasin family, exhibits outstanding efficacy against a variety of tumor cells and plant pathogens. However, its low yield and high production cost are major obstacles limiting its wide application. In order to increase CheA yield, an engineered strain was established by overexpressing , the gene encoding the MFS family's efflux pump, on chassis cells lacking , which have been shown to act as a negative regulator of CheA biosynthesis.

View Article and Find Full Text PDF

Banana (Musa spp.) is widely cultivated as the major fruit in Pakistan. Anthracnose fruit rot caused by various Colletotrichum spp.

View Article and Find Full Text PDF

Pigeonpea is an important legume valued for its high nutritional, agricultural, and economic significance in the Asian subcontinent. Despite its potential for high yield, productivity remains stagnant due to several abiotic and biotic stresses. To mitigate these challenges, biotechnological interventions like genome editing offer promising solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!