Silver nanoparticle behaviour in lake water depends on their surface coating.

Sci Total Environ

Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl Vogt, CH-1211 Geneva, Switzerland. Electronic address:

Published: December 2016

The present study examines the stability of silver nanoparticles (AgNPs) of three different coatings - citrate (CIT), polyvinyl pyrrolidone (PVP) and lipoic acid (LIP) and two sizes - 20 and 50nm in lake water (LW) over time. Using a combination of asymmetric flow field-flow fractionation (AsFlFFF), surface plasmon resonance (SPR), and single particle inductively coupled plasma mass spectrometry (SP-ICP-MS), the influence of size, surface coating, exposure time, as well as the presence and nature of dissolved organic matter (DOM) on the transformation of AgNPs at low environmental concentrations was thoroughly investigated. The results revealed that the AgNP stability in lake water are complex interplay between the surface coating characteristics, exposure time and presence and nature of DOM. Among the studied variables surface coating was found to play the major role of determining AgNPs behaviour in lake water. PVP-coated AgNPs agglomerated to a lesser extent as compared with the CIT- and LIP-AgNPs. For a given surface coating, DOM of pedogenic and aquagenic origin increased the stability of the AgNPs (LW+EPS>LW+SRHA>LW). Moreover, extracellular polymeric substances (EPS; aquagenic origin) stabilized lipoic acid-coated AgNPs more effectively than Suwannee River Humic Acids (SRHA; pedogenic origin), showing that DOM nature has to be also considered for improved understanding the AgNP stability in aquatic environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.08.181DOI Listing

Publication Analysis

Top Keywords

surface coating
20
lake water
16
behaviour lake
8
exposure time
8
presence nature
8
agnp stability
8
aquagenic origin
8
surface
6
agnps
6
coating
5

Similar Publications

Background/purpose: Titanium (Ti) is extensively used in dental and orthopedic implants due to its excellent mechanical properties. However, its smooth and biologically inert surface does not support the ingrowth of new bone, and Ti ions may have adverse biological effects. The purpose is to improve the corrosion resistance of titanium and create a 3D structured coating to enhance osseointegration through a very simple and fast surface treatment.

View Article and Find Full Text PDF

Interstitial Doping in Ultrafine Nanocrystals for Efficient and Durable Water Splitting.

Angew Chem Int Ed Engl

January 2025

Nanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, No. 169 Sheng Tai West Road, Jiangning District, Nanjing, Jiangsu, China, 211106, Nanjing, CHINA.

Transition metal-based catalysts with high efficiency and stability for overall water splitting (OWS) offer significant potential for reducing green hydrogen production costs. Utilizing sputtering deposition technology, we propose a deposition-diffusion strategy to fabricate heterojunction coatings composed of ultrafine FeCoNi-C-N transition metal interstitial solid solution (TMISS) nanocrystals and amorphous nitrided carbon (NC) on the pre-deposited NC micro column arrays. The diffusion of C and N atoms results in the formation of uniformly distributed TMISS nanocrystals, with an average diameter of ~1.

View Article and Find Full Text PDF

Introduction: Assessing the cytotoxicity of gold nanoparticles (GNPs) has gained importance due to their development in the biomedical field.

Method: In this study, we systematically synthesized gold nanorods (GNRs), gold nanobipyramids (GNBPs), and gold nanocups (GNCs) using a seed-mediated method, with an average length of 32.53 ± 4.

View Article and Find Full Text PDF

Amorphous Ni(OH) Coated Cu Dendrites with Superaerophobic Interface for Bipolar Hydrogen Production Assisted with Formaldehyde Oxidation.

Small

January 2025

State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.

Since formaldehyde oxidation reaction (FOR) can release H, it is attractive to construct a bipolar hydrogen production system consisting of FOR and hydrogen evolution reaction (HER). Although copper-based catalysts have attracted much attention due to their low cost and high FOR activity, the performance enhancement mechanism lacks in-depth investigation. Here, an amorphous-crystalline catalyst of amorphous nickel hydroxide-coated copper dendrites on copper foam (Cu@Ni(OH)/CF) is prepared.

View Article and Find Full Text PDF

A Bioinspired Virus-Like Mechano-Bactericidal Nanomotor for Ocular Multidrug-Resistant Bacterial Infection Treatment.

Adv Mater

January 2025

Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, P. R. China.

Multidrug-resistant (MDR) bacteria and their associated biofilms are major causative factors in eye infections, often resulting in blindness and presenting considerable global health challenges. Presently, mechano-bactericidal systems, which combine distinct topological geometries with mechanical forces to physically induce bacterial apoptosis, show promising potential. However, the physical interaction process between current mechano-bactericidal systems and bacteria is generally based on passive diffusion or Brownian motion and lacks the force required for biofilm penetration; thus, featuring low antibacterial efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!