Does Thiazolidinedione therapy exacerbate fluid retention in congestive heart failure?

Pharmacol Ther

Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel; Department of Laboratory Medicine, Rambam Human Health Care Campus, Haifa, Israel. Electronic address:

Published: December 2016

The ever-growing global burden of congestive heart failure (CHF) and type 2 diabetes mellitus (T2DM) as well as their co-existence necessitate that anti-diabetic pharmacotherapy will modulate the cardiovascular risk inherent to T2DM while complying with the accompanying restrictions imposed by CHF. The thiazolidinedione (TZD) family of peroxisome proliferator-activated receptor γ (PPARγ) agonists initially provided a promising therapeutic option in T2DM owing to anti-diabetic efficacy combined with pleiotropic beneficial cardiovascular effects. However, the utility of TZDs in T2DM has declined in the past decade, largely due to concomitant adverse effects of fluid retention and edema formation attributed to salt-retaining effects of PPARγ activation on the nephron. Presumably, the latter effects are potentially deleterious in the context of pre-existing fluid retention in CHF. However, despite a considerable body of evidence on mechanisms responsible for TZD-induced fluid retention suggesting that this class of drugs is rightfully prohibited from use in CHF patients, there is a paucity of experimental and clinical studies that investigate the effects of TZDs on salt and water homeostasis in the CHF setting. In an attempt to elucidate whether TZDs actually exacerbate the pre-existing fluid retention in CHF, our review summarizes the pathophysiology of fluid retention in CHF. Moreover, we thoroughly review the available data on TZD-induced fluid retention and proposed mechanisms in animals and patients. Finally, we will present recent studies challenging the common notion that TZDs worsen renal salt and water retention in CHF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharmthera.2016.09.007DOI Listing

Publication Analysis

Top Keywords

fluid retention
28
retention chf
16
retention
8
congestive heart
8
chf
8
pre-existing fluid
8
tzd-induced fluid
8
salt water
8
fluid
7
effects
5

Similar Publications

Nitrogen fertilizer delivery inefficiencies limit crop productivity and contribute to environmental pollution. Herein, we developed Zn- and Fe-doped hydroxyapatite nanomaterials (ZnHAU, FeHAU) loaded with urea (∼26% N) through hydrogen bonding and metal-ligand interactions. The nanomaterials attach to the leaf epidermal cuticle and localize in the apoplast of leaf epidermal cells, triggering a slow N release at acidic conditions (pH 5.

View Article and Find Full Text PDF

We report here a rare case of a concurrent occurrence of abscesses caused by  in the prostate, seminal vesicles, and epididymis. A 71-year-old male presented to our hospital with urinary retention, and an indwelling urethral catheter was inserted. He remained afebrile until a revisit one month later when he developed a fever and left scrotal swelling.

View Article and Find Full Text PDF

Understanding the behavior of sand screens is crucial for optimizing sand control strategies and preventing wellbore failure, which can significantly impact reservoir management and production efficiency. This paper presents a comprehensive experimental and numerical modeling study on sand screen performance, aimed at providing insights prior to real-field applications. The study evaluated a 200-μm wire-wrapped screen (WWS) using slurry tests to determine the amount of sand retained, sand produced and retained permeability to assess screen efficiency.

View Article and Find Full Text PDF

Efficient enantioselective separation is a critical process in pharmaceutical and chemical industries for the production of chiral compounds. Herein, we developed a novel approach for the efficient enantioselective separation of primary amines using supercritical fluid chromatography (SFC) with a commercially available SFC column, Cel1. The key factors of separation, including cosolvent ratios, total cosolvent percentages, and temperature, were systematically assessed in this study.

View Article and Find Full Text PDF

Exudate management is essential for creating a moist wound environment that promotes optimal healing, especially in highly exuding wounds, where choosing an appropriate wound dressing to handle high volumes of exudate is a key part of the wound management strategy. Superabsorbent wound dressings (SWDs) have been designed to absorb and retain large amounts of exudate. Thus, they are advocated for management of wounds with moderate-to-high levels of exudate to reduce the risk of leakage and damage to the periwound skin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!