The classical recommendation for paramedian approaches is needle insertion 1-2 cm paramedian and an angle of 10°-15° medial-cephalad to the plane of the back, but contact with vertebrae is frequent. A mathematical approach to individualizing punctures is proposed on the basis of skin-dural sac distance (d): Optimal angle ∼ inverse cosine [d/ √(1+d^2) ] and the distance covered by the needle ∼ √(1+d^2) for 1 cm paramedian punctures. The inferred angles were compared to optimal angles leading to the central dorsal part of the dural sac from 1 to 2 cm paramedian, measured by Magnetic Resonance Imaging (MRI) in seven cases and in a short stature volunteer (1.58 m, Body Mass Index (BMI) 23.2), to study supine and fetal positions using both closed MR and ultrasound. The average (d) decreased rostrally [6.8 cm (L4-L5)-4.3 cm (T11-T12)] while the mean optimal incidence angles increased [8.3°-16.5° (L4-L5) to 12.7°-24.1° (T11-T12) at 1-2 cm paramedian, respectively] and coincided with the estimated angles with a correlation coefficient = 0.98. In the volunteer, the optimal lateromedial angles increased from 14.4° to 26.7° (L3-L4) to 17.1°-30.3° (T11-T12) for a (d) = 3.7 cm (L3-L4)-3.1 cm (T11-T12) and increased ≤3.7° and ≤5.1° at 1 and 2 cm paramedian, respectively, in fetal positions in MR. Ultrasound yielded comparable figures. The range of possible angles for dural punctures is wider at 1 cm paramedian in lower approaches in lateral decubitus [from 3.6° at T12L1 (12.2°-15.8°) to 9° at L3L4 (8.8°-18.7°)]. The classically recommended angles of 10°-15° differ from the optimal angles, particularly in small patients, suggesting the need for ultrasound guidance or for inferring angles prior to spinal anesthesia. Clin. Anat. 29:1046-1052, 2016. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ca.22792DOI Listing

Publication Analysis

Top Keywords

optimal angles
12
angles
10
skin-dural sac
8
sac distance
8
distance optimal
8
paramedian
8
spinal anesthesia
8
1-2 paramedian
8
fetal positions
8
angles increased
8

Similar Publications

Motlagh, JG and Lipps, DB. The contribution of muscular fatigue and shoulder biomechanics to shoulder injury incidence during the bench press exercise: A narrative review. J Strength Cond Res 38(12): 2147-2163, 2024-Participation in competitive powerlifting has rapidly grown over the past two decades.

View Article and Find Full Text PDF

Background And Objectives: Surgical planning is critical to achieve optimal outcome in deep brain stimulation (DBS). The relationship between clinical outcomes and DBS electrode position relative to subthalamic nucleus (STN) is well investigated, but the role of surgical trajectory remains unclear. We sought to determine whether preoperatively planned DBS lead trajectory relates to adequate motor outcome in STN-DBS for Parkinson's disease (PD).

View Article and Find Full Text PDF

Differential expression of osteoblast-like cells on self-organized titanium dioxide nanotubes.

J Dent Sci

December 2024

Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.

Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.

View Article and Find Full Text PDF

Background/purpose: The increasing importance of computer assisted implant surgery (CAIS) in the practice of implant dentistry calls for adequate education and training of clinicians. However, limited evidence exists to support optimal educational strategies and best practices. This study aimed to investigate the effectiveness of distributed training with dynamic CAIS (d-CAIS) on the precision of freehand implant placement by inexperienced operators.

View Article and Find Full Text PDF

Hydraulic fracturing, which forms complex fracture networks, is a common technique for efficiently exploiting low-permeability conglomerate reservoirs. However, the presence of gravel makes conglomerate highly heterogeneous, endowing the deformation, failure, and internal micro-scale fracture expansion mechanisms with uniqueness. The mechanism of fracture expansion when encountering gravel in conglomerate reservoirs remains unclear, challenging the design and effective implementation of hydraulic fracturing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!