The Kondo effect of a Co atom on Cu(100) was investigated with a low-temperature scanning tunneling microscope using a monoatomically sharp nickel tip. Upon a tip-Co contact, the differential conductance spectra exhibit a spin-split asymmetric Kondo resonance. The computed ab initio value of the exchange coupling is too small to suppress the Kondo effect, but sufficiently large to produce the splitting observed. A quantitative analysis of the line shape using the numerical renormalization group technique indicates that the junction spin polarization is weak.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.6b02617 | DOI Listing |
Nano Lett
January 2025
Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea.
We demonstrate the reversible control of interactions between a local molecular spin, hosted within an iron phthalocyanine (FePc) molecule, and the conduction electrons of a supporting Au(111) surface. Using the tip of a scanning tunneling microscope, we deliberately and reversibly manipulate the adsorption configuration of the molecule relative to the underlying substrate lattice. Different rotation configurations lead to noticeable changes in the differential conductance measured on the FePc molecules.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Applied Biological Chemistry, Graduate School of Environmental Horticulture, Chiba University, Matsudo 271-8510, Chiba, Japan.
Botulinum neurotoxins (BoNTs), ricin, and many other biological toxins are called AB toxins possessing heterogeneous A and B subunits. We propose herein a quick and safe sensing approach to AB toxins based on their unique quaternary structures. The proposed approach utilizes IgG antibodies against their A-subunits in combination with those human cell-membrane glycolipids that act as the natural ligands of B-subunits.
View Article and Find Full Text PDFLangmuir
January 2025
Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
The amount of incorporation of linear alcohols and ethers in HSiWO·6HO (HSiW·6HO, 50 wt %) supported on silica (SiO) was estimated by a conventional volumetric method and infrared (IR) spectroscopy, and the state of involved molecules was elucidated. First, the attribution of the key IR band at 2200 cm, which was observed for the water of crystallization of HSiW·6HO, to HO species (protons) was verified by coincident observation of thermogravimetric-differential thermal analysis, X-ray diffraction (XRD), and IR spectroscopy during thermal treatment in addition to the isotope exchange with DO. The 2200 cm band was gradually decreased in intensity by increasing the amount of adsorption of pyridine and was totally consumed at saturation, while the volumetric method provided the accurate number of included pyridine molecules.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
Nanobubbles wield a significant influence over the electronic properties of 2D materials, showing diverse applications ranging from flexible devices to strain sensors. Here, we reveal that a strongly correlated phenomenon, i.e.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Cologne, Germany.
We report spin-polarized scanning tunneling microscopy measurements of an Anderson impurity system in MoS_{2} mirror-twin boundaries, where both the quantum-confined impurity state and the Kondo resonance resulting from the interaction with the substrate are accessible. Using a spin-polarized tip, we observe magnetic-field-induced changes in the peak heights of the Anderson impurity states as well as in the magnetic-field-split Kondo resonance. Quantitative comparison with numerical renormalization group calculations provides evidence of the notable spin polarization of the spin-resolved impurity spectral function under the influence of a magnetic field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!