Respiration
Department of Health Science, University of Milan, Pulmonary Rehabilitation Unit, Fondazione Salvatore Maugeri, IRCCS - Scientific Institute of Milan, Milan, Italy.
Published: September 2017
Background: Lung diffusing capacity (DLCO) and lung volume distribution predict exercise performance and are altered in COPD patients. If pulmonary rehabilitation (PR) can modify DLCO parameters is unknown.
Objectives: To investigate changes in DLCO and ventilation inhomogeneity following a PR program and their relation with functional outcomes in patients with COPD.
Methods: This was a prospective, observational, multicentric study. Patients were evaluated before and after a standardized 3-week PR program. Functional assessment included body plethysmography, DLCO, transfer factor (KCO) and alveolar volume (VA), gas exchange, the 6-min walking test (6MWT) and exercise-related dyspnea. Patients were categorized according to the severity of airflow limitation and presence of ventilation inhomogeneity, identified by a VA/TLC <0.8.
Results: Two hundred and fifty patients completed the study. Baseline forced expiratory volume in 1 s (FEV1) % predicted (mean ± SD) was 50.5 ± 20.1 (76% males); 137 patients had a severe disease. General study population showed improvements in 6MWT (38 ± 55 m; p < 0.01), DLCO (0.12 ± 0.63 mmol × min-1 kPa-1; p < 0.01), lung function and dyspnea. Comparable improvements in DLCO were observed regardless of the severity of disease and the presence of ventilation inhomogeneity. While patients with VA/TLC <0.8 improved the DLCO increasing their VA (177 ± 69 ml; p < 0.01), patients with VA/TLC >0.8 improved their KCO (8.1 ± 2.8%; p = 0.019). The latter had also better baseline lung function and higher improvements in 6MWT (14.6 ± 6.7 vs. 9.0 ± 1.8%; p = 0.015). Lower DLCO at baseline was associated with lower improvements in 6MWT, the greatest difference being between subjects with very severe and mild DLCO impairment (2.7 ± 7.4 vs. 14 ± 2%; p = 0.049).
Conclusions: In COPD patients undergoing a PR program, different pathophysiological mechanisms may drive improvements in DLCO, while ventilation inhomogeneity may limit improvements in exercise tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000448847 | DOI Listing |
J Clin Med
December 2024
Anaesthesiology and Operative Intensive Care, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany.
The induction of general anesthesia leads to the development of atelectasis and redistribution of ventilation to non-dependent lung regions with subsequent impairment of gas exchange. However, it remains unclear how rapidly atelectasis occurs after the induction of anesthesia in obese patients. We therefore investigated the extent of atelectasis formation in obese patients in the first few minutes after the induction of general anesthesia and initiation of mechanical ventilation in the operating room.
View Article and Find Full Text PDFBackground And Objectives: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron degeneration resulting in loss of muscle function. Care management is restricted to symptomatic and palliative strategies, while clinical manifestations are heterogeneous. However, assessing the timing and benefits of ALS major clinical interventions remains challenging, with varying and nonspecific time-to-events estimates reported in the literature.
View Article and Find Full Text PDFExpert Rev Respir Med
December 2024
Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.
Introduction: Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CF transmembrane regulator (CFTR) gene, leading to progressive lung disease and systemic complications. Lung disease remains the primary cause of morbidity and mortality, making early detection of lung function decline crucial. The Lung Clearance Index (LCI), derived from the multiple breath washout (MBW) test, has emerged as a sensitive measure for identifying early airway disease.
View Article and Find Full Text PDFBMC Pulm Med
November 2024
Univ Rouen Normandie, GRHVN UR 3830, CHU Rouen, Department of Medical Intensive Care, F-76000 , Rouen, France.
Background: The ventilatory physiopathology of patients with interstitial lung disease (ILD) remains poorly understood. We aimed to personalize a mechanical simulator to model healthy and ILD profiles ventilation, and to evaluate the effect of spontaneous breathing on respiratory mechanics at rest and during exercise.
Methods: In a 2-compartment lung simulator (ASL 5000), we modeled 1 healthy and 3 ILD profiles, at rest and during exercise, based on physiological data from literature and patients.
Intensive Care Med Exp
November 2024
Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68165, Mannheim, Germany.
Background: Quantification of pulmonary edema in patients with acute respiratory distress syndrome (ARDS) by chest computed tomography (CT) scan has not been validated in routine diagnostics due to its complexity and time-consuming nature. Therefore, the single-indicator transpulmonary thermodilution (TPTD) technique to measure extravascular lung water (EVLW) has been used in the clinical setting. Advances in artificial intelligence (AI) have now enabled CT images of inhomogeneous lungs to be segmented automatically by an intensive care physician with no prior radiology training within a relatively short time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.