Friedreich's ataxia is the most common autosomal recessive form of neurodegenerative ataxia. We present a longitudinal study on the gait pattern of children and adolescents affected by Friedreich's ataxia using Gait Analysis and the Scale for the Assessment and Rating of Ataxia (SARA). We assessed the spectrum of changes over 12 months of the gait characteristics and the relationship between clinical and instrumental evaluations. We enrolled 11 genetically confirmed patients affected by Friedreich's ataxia in this study together with 13 normally developing age-matched subjects. Eight patients completed a 12-month follow-up under the same protocol. By comparing the gait parameters of Friedreich's ataxia with the control group, we found significant differences for some relevant indexes. In particular, the increased knee and ankle extension in stance revealed a peculiar biomechanical pattern, which correlated reliably with SARA Total, Gait and Sitting scores. The knee pattern showed its consistency also at the follow-up: Knee extension increased from 6.8±3.5° to -0.5±3.7° and was significantly correlated with the SARA total score. This feature anticipated the loss of the locomotor function in two patients. In conclusion, our findings demonstrate that the selective and segmental analysis of kinetic/kinematic features of ataxic gait, in particular the behavior of the knee, provides sensitive measures to detect specific longitudinal and functional alterations, more than the SARA scale, which however has proved to be a reliable and practical assessment tool. Functional outcomes measures integrated by instrumental evaluation increase their sensitivity, reliability and suitability for the follow-up of the disease progression and for the application in clinical trials and in rehabilitative programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012652PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162463PLOS

Publication Analysis

Top Keywords

friedreich's ataxia
20
children adolescents
8
adolescents friedreich's
8
longitudinal study
8
sara total
8
ataxia
7
gait
6
friedreich's
5
functional gait
4
gait assessment
4

Similar Publications

Introduction: Friedreich Ataxia (FA) is a multisystem neurodegenerative disease. Affected individuals rely on mobility assistive technologies (MAT) (e.g.

View Article and Find Full Text PDF

Safety and efficacy of omaveloxolone v/s placebo for the treatment of Friedreich's ataxia in patients aged more than 16 years: a systematic review.

Orphanet J Rare Dis

December 2024

Discovery Research Division, Indian Council of Medical Research (ICMR) Headquarters, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box 4911, New Delhi, 110029, India.

Background: Friedreich's ataxia (FA) is a rare genetic disorder caused by silencing of the frataxin gene (FXN), which leads to multiorgan damage. Nrf2 is a regulator of FXN, which is a modulator of oxidative stress in animals and humans. Omaveloxolone (Omav) is an Nrf2 activator and has been reported to have antioxidative potential in various disease conditions.

View Article and Find Full Text PDF

Harsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as "pleozymes". A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen sulfide (HS) to polysulfides and thiosulfate, dismutation of the superoxide radical (O*), and oxidation of NADH to NAD.

View Article and Find Full Text PDF

Background And Objectives: Friedreich's Ataxia (FRDA) is a genetic disease that affects a variety of different tissues. The disease is caused by a mutation in the gene ( which is important for the synthesis of iron-sulfur clusters. The primary pathologies of FRDA are loss of motor control and cardiomyopathy.

View Article and Find Full Text PDF

H-DNA is an intramolecular DNA triplex formed by homopurine/homopyrimidine mirror repeats. Since its discovery, the field has advanced from characterizing the structure to discovering its existence and role . H-DNA interacts with cellular machinery in unique ways, stalling DNA and RNA polymerases and causing genome instability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!