The endocannabinoid system (ECS) is involved in many physiological processes and has been suggested to play a critical role in the immune response and the central nervous system (CNS). Therefore, ECS modulation has potential therapeutic effects on immune dysfunctional disorders, such as sepsis and CNS injury-induced immunodeficiency syndrome (CIDS). In sepsis, excessive release of pro- and anti-inflammatory mediators results in multi-organ dysfunction, failure, and death. In CIDS, an acute CNS injury dysregulates a normally well-balanced interplay between CNS and the immune system, leading to increased patients' susceptibility to infections. In this review, we will discuss potential therapeutic modulation of the immune response in sepsis and CNS injury by manipulation of the ECS representing a novel target for immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4992728 | PMC |
http://dx.doi.org/10.3389/fphar.2016.00264 | DOI Listing |
J Neuroinflammation
January 2025
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
Background: Patients with lung adenocarcinoma (LUAD) receiving drug treatment often have an unpredictive response and there is a lack of effective methods to predict treatment outcome for patients. Dendritic cells (DCs) play a significant role in the tumor microenvironment and the DCs-related gene signature may be used to predict treatment outcome. Here, we screened for DC-related genes to construct a prognostic signature to predict prognosis and response to immunotherapy in LUAD patients.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC.
View Article and Find Full Text PDFBMC Surg
January 2025
Division of Immunology, Immunity to Infection, and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
Background: The insertion of a tracheostomy is an established technique used to wean patients off ventilatory support, manage secretions in complex conditions, and as a potentially life-saving procedure to bypass upper airway obstruction. Life-threatening complications during aftercare are not uncommon and may be influenced by a lack of education of carers or healthcare providers of children and young people living with a tracheostomy. Education programmes designed and supported by the National Tracheostomy Safety Project are effective, but resources are not available to educate the workforce at scale.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Anaesthesiology, Centre of Head and Orthopedics, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, Copenhagen, 2100, Denmark.
Background: Sepsis and shock are common complications of necrotising soft tissue infections (NSTI). Sepsis encompasses different endotypes that are associated with specific immune responses. Hyperbaric oxygen (HBO) treatment activates the cells oxygen sensing mechanisms that are interlinked with inflammatory pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!