Tendon injury is common and debilitating, and it is associated with long-term pain and ineffective healing. It is estimated to afflict 25% of the adult population and is often a career-ending disease in athletes and racehorses. Tendon injury is associated with high morbidity, pain, and long-term suffering for the patient. Due to the low cellularity and vascularity of tendon tissue, once damage has occurred, the repair process is slow and inefficient, resulting in mechanically, structurally, and functionally inferior tissue. Current treatment options focus on pain management, often being palliative and temporary and ending in reduced function. Most treatments available do not address the underlying cause of the disease and, as such, are often ineffective with variable results. The need for an advanced therapeutic that addresses the underlying pathology is evident. Tissue engineering and regenerative medicine is an emerging field that is aimed at stimulating the body's own repair system to produce de novo tissue through the use of factors such as cells, proteins, and genes that are delivered by a biomaterial scaffold. Successful tissue engineering strategies for tendon regeneration should be built on a foundation of understanding of the molecular and cellular composition of healthy compared with damaged tendon, and the inherent differences seen in the tissue after disease. This article presents a comprehensive clinical, biological, and biomaterials insight into tendon tissue engineering and regeneration toward more advanced therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312458 | PMC |
http://dx.doi.org/10.1089/ten.TEB.2016.0181 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biology, University of Kentucky, Lexington, KY 40508.
Identifying why complex tissue regeneration is present or absent in specific vertebrate lineages has remained elusive. One also wonders whether the isolated examples where regeneration is observed represent cases of convergent evolution or are instead the product of phylogenetic inertia from a common ancestral program. Testing alternative hypotheses to identify genetic regulation, cell states, and tissue physiology that explain how regenerative healing emerges in some species requires sampling multiple species among which there is variation in regenerative ability across a phylogenetic framework.
View Article and Find Full Text PDFPLoS One
January 2025
The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America.
The extrusion bioprinting of collagen material has many applications relevant to tissue engineering and regenerative medicine. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technology is capable of 3D printing collagen material with the specifications and details needed for precise tissue guidance, a crucial requirement for effective tissue repair. While FRESH has shown repeated success and reliability for extrusion printing, the mechanical properties of completed collagen prints can be improved further by post-print crosslinking methodologies.
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
Department of Biomedical Engineering, University of Illinois, Chicago, IL.
Bioabsorbable internal fixation is a well-accepted modality that is especially suitable for application in craniosynostosis. When first introduced, high rates of adverse tissue reactions were observed that have since been ameliorated with more biocompatible polymer formulations. However, the phenomenon has not entirely disappeared, and such reactions remain vexing.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Microtechnology (IMT), Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany.
Incorporating mechanical stretching of cells in tissue culture is crucial for mimicking (patho)-physiological conditions and understanding the mechanobiological responses of cells, which can have significant implications in areas like tissue engineering and regenerative medicine. Despite the growing interest, most available cell-stretching devices are not compatible with automated live-cell imaging, indispensable for characterizing alterations in the dynamics of various important cellular processes. In this work, StretchView is presented, a multi-axial cell-stretching platform compatible with automated, time-resolved live-cell imaging.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.
Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!