Inhibition of pancreatic lipase by black tea theaflavins: Comparative enzymology and in silico modeling studies.

Food Chem

Department of Food Science, The Pennsylvania State University, University Park, PA, United States; The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, United States. Electronic address:

Published: February 2017

Few studies have examined the effect of black tea (Camellia sinensis) theaflavins on obesity-related targets. Pancreatic lipase (PL) plays a central role in fat metabolism and is a validated target for weight loss. We compared the inhibitory efficacy of individual theaflavins and explored the underlying mechanism. Theaflavin-3,3'-digallate (TFdiG), theaflavin-3'-gallate, theaflavin-3-gallate, and theaflavin inhibited PL with IC50 of 1.9, 4.2, 3.0, and >10μmol/L. The presence and location of the galloyl ester moiety were essential for inhibitory potency. TFdiG exhibited mixed inhibition with respect to substrate concentration. In silico modeling showed that theaflavins bind to Asn263 and Asp206, which form a pocket adjacent to the active site, and galloyl-containing theaflavins are then predicted to perturb the protonation of His264. These data provide a putative mechanism to explain the anti-obesity effects of tea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5228287PMC
http://dx.doi.org/10.1016/j.foodchem.2016.08.052DOI Listing

Publication Analysis

Top Keywords

pancreatic lipase
8
black tea
8
silico modeling
8
theaflavins
5
inhibition pancreatic
4
lipase black
4
tea theaflavins
4
theaflavins comparative
4
comparative enzymology
4
enzymology silico
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!