Co-encapsulation of paclitaxel and baicalein in nanoemulsions to overcome multidrug resistance via oxidative stress augmentation and P-glycoprotein inhibition.

Int J Pharm

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China. Electronic address:

Published: November 2016

Multidrug resistance (MDR) is a major obstacle for clinical application of paclitaxel (PTX). Recent studies have suggested that baicalein (BA) might be a potent MDR reversal agent with the ability of P-glycoprotein inhibition and oxidative stress augmentation. Herein, we co-encapsulated PTX and BA in nanoemulsions (PTX/BA NE) for overcoming MDR in breast cancer. Paclitaxel-cholesterol complex and baicalein-phospholipid complex were prepared to improve the liposolubility of PTX and BA. The cytotoxicity of the combination of PTX and BA with different weight ratios were evaluated and the combination with a weight ratio of 1/1 exhibited the strongest synergistic effect. In vitro cytotoxicity study indicated that PTX/BA NE had a better antitumor efficacy in MCF-7/Tax cells than other PTX formulations. Studies on cellular uptake demonstrated that the PTX/BA NE could effectively accumulate in cancer cells. Mechanism research showed that PTX/BA NE could significantly increase the cellular reactive oxygen species (ROS), decrease cellular glutathione (GSH), and enhance caspase-3 activity in MCF-7/Tax cells. More importantly, in vivo antitumor study demonstrated that PTX/BA NE exhibited a much higher antitumor efficacy than other PTX formulations. These findings suggest that co-delivery of PTX and BA in nanoemulsions might provide us a potential combined therapeutic strategy for overcoming MDR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2016.09.001DOI Listing

Publication Analysis

Top Keywords

multidrug resistance
8
oxidative stress
8
stress augmentation
8
p-glycoprotein inhibition
8
ptx nanoemulsions
8
overcoming mdr
8
antitumor efficacy
8
mcf-7/tax cells
8
ptx formulations
8
demonstrated ptx/ba
8

Similar Publications

Purpose: Alteration of visual acuity in wet age-related macular degeneration (AMD) is mostly driven by vascular endothelial growth factor A (VEGF-A)-induced edema from leaky newly forming blood vessels below the retina layers. To date, all therapies aimed at alleviation of this process have relied on inhibition of VEGF-A activity. Although effective in preventing vascular leak and edema, this approach also leads to the loss of normal vasculature and multiple related side effects.

View Article and Find Full Text PDF

A major risk to the poultry industry is antimicrobial resistance (AMR), specifically with regard to Mycoplasma gallisepticum (MG) infections. The sensitivity patterns of 100 MG isolates to biocides and antibiotics were examined in this study to clarify the interactions between antimicrobial agents and resistance mechanisms. The antimicrobial activity against MG was assessed using broth microdilution, and the results are shown as the minimum inhibitory concentration (MIC) for each strain, the MIC distribution (range), the MIC, and/or the MIC.

View Article and Find Full Text PDF

derived outer membrane vesicles mediated bacterial virulence, antibiotic resistance, host immune responses and clinical applications.

Virulence

December 2025

Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.

is a gram-negative pathogen that can cause multiple diseases including sepsis, urinary tract infections, and pneumonia. The escalating detections of hypervirulent and antibiotic-resistant isolates are giving rise to growing public concerns. Outer membrane vesicles (OMVs) are spherical vesicles containing bioactive substances including lipopolysaccharides, peptidoglycans, periplasmic and cytoplasmic proteins, and nucleic acids.

View Article and Find Full Text PDF

Emerging carbapenem-resistant in a tertiary care hospital in Lima, Peru.

Microbiol Spectr

January 2025

Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.

The emergence of carbapenem-resistant (CRKP) poses a significant public health threat, particularly in low- and middle-income countries (LMICs) with limited surveillance and treatment options. This study examines the genetic diversity, resistance patterns, and transmission dynamics of 66 CRKP isolates recovered over 5 years (2015-2019) after the first case of CRKP was identified at a tertiary care hospital in Lima, Peru. Our findings reveal a shift from to as the dominant carbapenemase gene after 2017.

View Article and Find Full Text PDF

In Vitro 3D Models of Haematological Malignancies: Current Trends and the Road Ahead?

Cells

January 2025

DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.

Haematological malignancies comprise a diverse group of life-threatening systemic diseases, including leukaemia, lymphoma, and multiple myeloma. Currently available therapies, including chemotherapy, immunotherapy, and CAR-T cells, are often associated with important side effects and with the development of drug resistance and, consequently, disease relapse. In the last decades, it was largely demonstrated that the tumor microenvironment significantly affects cancer cell proliferation and tumor response to treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!