A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigating mixing and segregation using discrete element modelling (DEM) in the Freeman FT4 rheometer. | LitMetric

Investigating mixing and segregation using discrete element modelling (DEM) in the Freeman FT4 rheometer.

Int J Pharm

Johnson Matthey Technology Centre, P.O. Box 1, Belasis Avenue, Billingham, Cleveland, TS23 1LB, United Kingdom. Electronic address:

Published: November 2016

Mixing and segregation in a Freeman FT4 powder rheometer, using binary mixtures with varied particle size ratio and volume fraction, were studied using the Discrete Element Method (DEM). As the blade moves within the particle bed, size induced segregations can occur via a sifting mechanism. A larger particle size ratio and/or a larger volume fraction of large particles lead to a quicker segregation process. A higher particle velocity magnitude can promote the segregation process and the rate for the segregation index increases in the radial direction: from the centre towards the outer layer. In the current DEM simulations, it is shown that the change in flow energy associated with segregation and mixing depends on the choice of frictional input parameters. FT4 is proposed as a potential tool to compare and rank the segregation tendency for particulate materials with distinct differences in flow energy of each component. This is achieved by measuring the flow energy gradient after a number of test cycles for mixing powders with different flow properties. Employing the FT4 dynamic powder characterisation can be advantageous to establish blending performances in an industrial context.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2016.08.065DOI Listing

Publication Analysis

Top Keywords

flow energy
12
mixing segregation
8
discrete element
8
freeman ft4
8
particle size
8
size ratio
8
volume fraction
8
segregation process
8
segregation
7
investigating mixing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!