Despite the annual public health burden of seasonal influenza and the continuing threat of a global pandemic posed by the emergence of highly pathogenic/pandemic strains, conventional influenza vaccines do not provide universal protection, and exhibit suboptimal efficacy rates, even when they are well matched to circulating strains. To address the need for a highly effective universal influenza vaccine, we have developed a novel M2-deficient single replication vaccine virus (M2SR) that induces strong cross-protective immunity against multiple influenza strains in mice. M2SR is able to infect cells and expresses all viral proteins except M2, but is unable to generate progeny virus. M2SR generated from influenza A/Puerto Rico/8/34 (H1N1) protected mice against lethal challenge with influenza A/Puerto Rico/8/34 (H1N1, homosubtypic) and influenza A/Aichi/2/1968 (H3N2, heterosubtypic). The vaccine induced strong systemic and mucosal antibody responses of both IgA and IgG classes. Strong virus-specific T cell responses were also induced. Following heterologous challenge, significant numbers of IFN-γ-producing CD8 T cells, with effector or effector/memory phenotypes and specific for conserved viral epitopes, were observed in the lungs of vaccinated mice. A substantial proportion of the CD8 T cells expressed Granzyme B, suggesting that they were capable of killing virus-infected cells. Thus, our data suggest that M2-deficient influenza viruses represent a promising new approach for developing a universal influenza vaccine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038585 | PMC |
http://dx.doi.org/10.1016/j.vaccine.2016.08.061 | DOI Listing |
Front Immunol
January 2025
Immunology Research Center, National Health Research Institute, Zhunan, Taiwan.
CASK, a MAGUK family scaffold protein, regulates gene expression as a transcription co-activator in neurons. However, the mechanism of CASK nucleus translocation and the regulatory function of CASK in myeloid cells remains unclear. Here, we investigated its role in H5N1-infected macrophages.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
Influenza A virus (IAV) continuously threatens animal and public health globally, with swine serving as a crucial reservoir for viral reassortment and evolution. In Chile, H1N2 and H3N2 subtypes were introduced in the swine population before the H1N1 2009 pandemic, and the H1N1 was introduced from the H1N1pdm09 by successive reverse zoonotic events. Here, we report two novel introductions of IAV H3N2 human-origin in Chilean swine during 2023.
View Article and Find Full Text PDFJ Trop Med
January 2025
Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Silymarin is a polyphenolic flavonoid extracted from milk thistle. It has potent immunomodulatory effects and can inhibit the replication of influenza A virus (IAV). The present study aimed to determine the inflammatory and anti-inflammatory cytokine secretion patterns in mice before and after silibinin treatment.
View Article and Find Full Text PDFHeliyon
January 2025
National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
Background: Previous studies have found an association between influenza, cardiovascular and cerebrovascular disease mortality, and all-cause mortality. And the vaccination of elderly diabetes is often recommended to reduce the risk of hospitalization and death. Nevertheless, no previous work has investigated the short-term impact of influenza on diabetes mortality in China.
View Article and Find Full Text PDFRSC Chem Biol
January 2025
Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku 465 Kajii-cho Kyoto 602-8566 Japan
A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C-S bond configurations in and methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!