GM-CSF primes cardiac inflammation in a mouse model of Kawasaki disease.

J Exp Med

The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia Rheumatology Unit, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia

Published: September 2016

Kawasaki disease (KD) is the leading cause of pediatric heart disease in developed countries. KD patients develop cardiac inflammation, characterized by an early infiltrate of neutrophils and monocytes that precipitates coronary arteritis. Although the early inflammatory processes are linked to cardiac pathology, the factors that regulate cardiac inflammation and immune cell recruitment to the heart remain obscure. In this study, using a mouse model of KD (induced by a cell wall Candida albicans water-soluble fraction [CAWS]), we identify an essential role for granulocyte/macrophage colony-stimulating factor (GM-CSF) in orchestrating these events. GM-CSF is rapidly produced by cardiac fibroblasts after CAWS challenge, precipitating cardiac inflammation. Mechanistically, GM-CSF acts upon the local macrophage compartment, driving the expression of inflammatory cytokines and chemokines, whereas therapeutically, GM-CSF blockade markedly reduces cardiac disease. Our findings describe a novel role for GM-CSF as an essential initiating cytokine in cardiac inflammation and implicate GM-CSF as a potential target for therapeutic intervention in KD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5030799PMC
http://dx.doi.org/10.1084/jem.20151853DOI Listing

Publication Analysis

Top Keywords

cardiac inflammation
20
cardiac
8
mouse model
8
kawasaki disease
8
gm-csf
7
inflammation
5
gm-csf primes
4
primes cardiac
4
inflammation mouse
4
model kawasaki
4

Similar Publications

Research has shown various hydrolyzed proteins possessed beneficial physiological functions; however, the mechanism of how hydrolysates influence metabolism is unclear. Therefore, the current study aimed to examine the effects of different sources of protein hydrolysates, being the main dietary protein source in extruded diets, on metabolism in healthy adult dogs. Three complete and balanced extruded canine diets were formulated: control chicken meal diet (CONd), chicken liver and heart hydrolysate diet (CLHd), mechanically separated chicken hydrolysate diet (CHd).

View Article and Find Full Text PDF

BAY 2413555 is a novel selective and reversible positive allosteric modulator of the type 2 muscarinic acetylcholine (M2) receptor, aimed at enhancing parasympathetic signaling and restoring cardiac autonomic balance for the treatment of heart failure (HF). This study tested the safety, tolerability and pharmacokinetics of this novel therapeutic option. REMOTE-HF was a multicenter, double-blind, randomized, placebo-controlled, phase Ib dose-titration study with two active arms.

View Article and Find Full Text PDF

Objective: Inflammation and oxidative damage play critical roles in the pathogenesis of sepsis-induced cardiac dysfunction. Multiple EGF-like domains 9 (MEGF9) is essential for cell homeostasis; however, its role and mechanism in sepsis-induced cardiac injury and impairment remain unclear.

Methods: Adenoviral and adeno-associated viral vectors were applied to overexpress or knock down the expression of MEGF9 in vivo and in vitro.

View Article and Find Full Text PDF

The influence of the mitochondrial control system on ischemic heart disease has become a major focus of current research. Mitophagy, as a very crucial part of the mitochondrial control system, plays a special role in ischemic heart disease, unlike mitochondrial dynamics. The published reviews have not explored in detail the unique function of mitophagy in ischemic heart disease, therefore, the aim of this paper is to summarize how mitophagy regulates the progression of ischemic heart disease.

View Article and Find Full Text PDF

Background: Granulomatosis with polyangiitis (GPA) is an autoimmune multisystem disorder characterized by small vessel vasculitis with granulomatous inflammation. In this report, we describe a unique case of GPA who presented with complete heart block (CHB) and developed complications due to intracranial large vessel involvement.

Case Summary: A 47-year-old gentleman presented with CHB with a background history of arthralgia and blood-tinged nasal discharge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!