Germ cell tumors (GCTs) represent a group of biologically complex malignancies that affect patients at different sites within the body and at different ages. The varying nature of these tumors reflects their cell of origin which is the primordial germ cell, which normally gives rise to ovarian and testicular egg and sperm producing cells. These cells retain an ability to give rise to all types of human tissues, and this is illustrated by the different kinds of GCTs that occur. In adolescent and young adult (AYA) patients, GCTs predominantly present as testicular, ovarian or mediastinal primary GCTs, and represent some of the most complex therapeutic challenges within any AYA practice. The varying types of GCTs, defined by primary site and/or age at presentation, can look very similar microscopically. However, there is growing evidence that they may have different molecular characteristics, different biology and different requirements for curative treatments. Whilst in adult testicular GCTs there is evidence for an environmental cause during fetal development and a genetic component, these causative factors are much less well understood in other GCTs. GCTs are some of the most curable cancers in adults, but some patients exhibit resistance to standard treatments. Because of this, today's clinical research is directed at understanding how to best utilize toxic therapies and promote healthy survivorship. This chapter explores the biology, behavior and treatment of GCTs and discusses how the AYA group of GCTs may hold some of the keys to understanding fundamental unanswered questions of biological variance and curability in GCTs.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000447081DOI Listing

Publication Analysis

Top Keywords

germ cell
12
gcts
11
cell tumors
8
gcts represent
8
tumors adolescents
4
adolescents young
4
young adults
4
adults germ
4
tumors gcts
4
represent group
4

Similar Publications

Background: Central nervous system (CNS) tumors lead to cancer-related mortality in children. Genetic ancestry-associated cancer prevalence and outcomes have been studied, but is limited.

Methods: We performed genetic ancestry prediction in 1,452 pediatric patients with paired normal and tumor whole genome sequencing from the Open Pediatric Cancer (OpenPedCan) project to evaluate the influence of reported race and ethnicity and ancestry-based genetic superpopulations on tumor histology, molecular subtype, survival, and treatment.

View Article and Find Full Text PDF

The Lepidopteran pest Trichoplusia ni and the parasitoid wasp Trichogramma brassicae represent a fascinating biological system, important for sustainable agricultural practices but challenging to observe. We present a nondestructive method based on micro-CT scanning technology (CT: computed tomography) for visualizing the internal parts of caterpillar embryos and of emerging parasitoids from infected eggs. Traditional methods of microscopic observation of the opaque egg contents require staining or dissection.

View Article and Find Full Text PDF

Aims: Childhood cancer is a risk factor for cardiovascular diseases in later life. Retinal examination allows to non-invasively observe the vasculature of an end-organ. We observe alterations in long-term childhood cancer survivors (CCS).

View Article and Find Full Text PDF

Primordial germ cells (PGCs) play a crucial role in transmitting genetic information to the next-generation. In chickens, genetically edited PGCs can be propagated and subsequently transplanted into recipient embryos to produce offspring with desired genetic traits. However, during early embryogenesis, the effects of external conditions on PGC migration through the vascular system to the gonads have yet to be explored, which may affect the efficiency of preparing gene-edited chickens.

View Article and Find Full Text PDF

Background: Strongyle nematodes pose a major challenge in veterinary parasitology, causing significant economic losses in livestock due to resistance to conventional treatments. Current anthelmintics, like Ivermectin, often encounter resistance issues. This study aims to address these gaps by synthesizing Carbon Quantum Dots (CQDs) and Copper-Doped CQDs (Cu@CQDs) using glucose extract, and evaluating their nematicidal properties against strongyles in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!