How chaperones, insertases and translocases facilitate insertion and folding of complex cytoplasmic proteins into cellular membranes is not fully understood. Here we utilize single-molecule force spectroscopy to observe YidC, a transmembrane chaperone and insertase, sculpting the folding trajectory of the polytopic α-helical membrane protein lactose permease (LacY). In the absence of YidC, unfolded LacY inserts individual structural segments into the membrane; however, misfolding dominates the process so that folding cannot be completed. YidC prevents LacY from misfolding by stabilizing the unfolded state from which LacY inserts structural segments stepwise into the membrane until folding is completed. During stepwise insertion, YidC and the membrane together stabilize the transient folds. Remarkably, the order of insertion of structural segments is stochastic, indicating that LacY can fold along variable pathways toward the native structure. Since YidC is essential in membrane protein biogenesis and LacY is a model for the major facilitator superfamily, our observations have general relevance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069129 | PMC |
http://dx.doi.org/10.1038/nchembio.2169 | DOI Listing |
Prog Neuropsychopharmacol Biol Psychiatry
December 2024
Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China. Electronic address:
Backgrounds: Aberrant brain structures in schizophrenia have been widely explored. However, the causal effects of negative symptoms on brain structural alterations are still unclear. This study aims to explore the synchronous and progressive alterations in gray matter volume (GMV) associated with negative symptoms.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2024
Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin, China, Tianjin Key Laboratory of Ocular Trauma, Tianjin, China, Tianjin Institute of Eye Health and Eye Diseases, Tianjin, China, China-UK "Belt and Road" Ophthalmology. Electronic address:
Background: This study investigated the association between photoreceptor structural restoration and visual function outcomes in patients undergoing surgery for closed macular holes (MHs). Using adaptive optics scanning laser ophthalmoscopy (AOSLO) and microperimetry, we aimed to provide a more detailed understanding of photoreceptor recovery and visual improvement in closed MHs.
Methods: We conducted a retrospective observational study of 31 eyes of 28 patients who underwent vitrectomy with internal limiting membrane (ILM) peeling to treat idiopathic MHs.
Food Chem
December 2024
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
The present study was performed to investigate the digestive profiles of snakeheads' belly muscles (BM), tail muscles (TM) dorsal muscles (DM), and eye muscles (EM), with further explorations of relevant factors. Kinetic models were adopted to describe the digestion process with crucial parameters. BM showed the highest digestibility and digestive rate, followed by DM, TM, and EM.
View Article and Find Full Text PDFComput Biol Med
December 2024
Khalifa University, Abu Dhabi, United Arab Emirates.
Background And Objective: Accurate extraction of retinal vascular components is vital in diagnosing and treating retinal diseases. Achieving precise segmentation of retinal blood vessels is challenging due to their complex structure and overlapping vessels with other anatomical features. Existing deep neural networks often suffer from false positives at vessel branches or missing fragile vessel patterns.
View Article and Find Full Text PDFBMC Genomics
December 2024
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland.
Low Complexity Regions (LCRs) are segments of proteins with a low diversity of amino acid composition. These regions play important roles in proteins. However, annotations describing these functions are dispersed across databases and scientific literature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!