Ever since the discovery of the existence of an interferon (IFN)-regulated ribonuclease, significant advances have been made in understanding the mechanism and associated regulatory effects of its action. What had been studied initially as a "unique" endoribonuclease is currently known as ribonuclease L (RNase L where "L" stands for latent). Some of the key developments include discovery of the RNase L signaling pathway, its structural characterization, and its molecular cloning. RNase L has been implicated in antiviral and antibacterial defense, as well as in hereditary prostate cancer. RNase L is activated by 2'-5' linked oligoadenylates (2-5A), which are synthesized by the oligoadenylate synthetases (OASs), a family of IFN-regulated pathogen recognition receptors that sense double-stranded RNAs. Activated RNase L cleaves single stranded RNAs, including viral RNAs and cellular RNAs. The catalytic activity of RNase L has been found to lead into the activation of several cellular signaling pathways, including those involved in autophagy, apoptosis, IFN-β production, NLRP3 inflammasome activation leading to IL-1β secretion, inhibition of cell migration, and cell adhesion. In this review, we will highlight the newest advances in our understanding of the catalytic role of RNase L in the context of different cellular pathways and extend the scope of these findings to discussion of potential therapeutic targets for antimicrobial drug development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7128181 | PMC |
http://dx.doi.org/10.1016/j.cyto.2016.08.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!