Human dental pulp stem cells (hDPSCs), selected from the stromal-vascular fraction of dental pulp, are ecto-mesenchymal stem cells deriving from neural crests, successfully used in human bone tissue engineering. For their use in human therapy GMP procedures are required. For instance, the use of fetal bovine serum (FBS) is strongly discouraged in clinical practice due to its high risk of prions and other infections for human health. Alternatively, clinical grade sera have been suggested, including the New Zealand FBS (NZ-FBS). Therefore, the aim of this study was to evaluate the behavior of hDPSCs expanded in culture medium containing NZ-FBS. Since it was widely demonstrated hDPSCs display relevant capabilities to differentiate into osteogenic and angiogenic lineages, we performed a comparative study to assess if these features are also retained by cultivating the cells with a safer serum never tested on this cell line. hDPSCs were grown using NZ-FBS and conventional (C-FBS) for 7, 14, and 21 days, in both 2D and 3D cultures. Growth curves, expression of bone-related markers, calcification and angiogenesis were evaluated. NZ-FBS induced significant cell growth with respect to C-FBS and promoted an earlier increase expression of osteogenic markers, in particular of those involved in the formation of mineralized matrix (BSP and OPN) within 14 days. In addition, hDPSCs cultured in presence of NZ-FBS were found to produce higher mRNA levels of the angiogenic factors, such as VEGF and PDGFA. Taken together, our results highlight that hDPSCs proliferate, enhance their osteogenic commitment and increase angiogenic factors in NZ-FBS containing medium. These features have also been found when hDPSC were seeded on the clinical-grade collagen I scaffold (Bio-Gide®), leading to the conclusion that for human therapy some procedures and above all the use of GMP-approved materials have no negative impact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990559PMC
http://dx.doi.org/10.3389/fphys.2016.00354DOI Listing

Publication Analysis

Top Keywords

osteogenic commitment
8
commitment increase
8
increase angiogenic
8
dental pulp
8
stem cells
8
human therapy
8
angiogenic factors
8
hdpscs
6
nz-fbs
6
human
5

Similar Publications

Chromatin-site-specific accessibility: A microtopography-regulated door into the stem cell fate.

Cell Rep

December 2024

Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province 310058, China. Electronic address:

Biomaterials that mimic extracellular matrix topography are crucial in tissue engineering. Previous research indicates that certain biomimetic topography can guide stem cells toward multiple specific lineages. However, the mechanisms by which topographic cues direct stem cell differentiation remain unclear.

View Article and Find Full Text PDF

Recent genome-wide association studies (GWAS) identified 518 significant loci associated with bone mineral density (BMD), including variants at the RUNX1 locus (rs13046645, rs2834676, and rs2834694). However, their regulatory impact on RUNX1 expression and bone formation remained unclear. This study utilized human induced pluripotent stem cells (iPSCs) differentiated into osteoblasts to investigate these variants' regulatory roles.

View Article and Find Full Text PDF

Borosilicate bioactive glasses with added Mg/Sr enhances human adipose-derived stem cells osteogenic commitment and angiogenic properties.

J Mater Sci Mater Med

November 2024

Bioceramics, Bioglasses and Biocomposites Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland.

Bioactive glasses are one of the most promising materials for applications in bone tissue engineering. In this study, the focus was on borosilicate bioactive glasses with composition 47.12 SiO - 6.

View Article and Find Full Text PDF

Biomimetic Model of Canine Periodontal Ligament.

Int J Mol Sci

November 2024

BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U.Porto, 4200-393 Porto, Portugal.

Periodontal disease affects about 80% of dogs, highlighting the importance of addressing periodontitis in veterinary dental care. The periodontal ligament (PDL) is a key structure holding the potential to regenerate the entire periodontal complex. This work presents an in vitro model of canine PDL-derived cell cultures that mimic the PDL's regenerative capacity for both mineralised and soft tissues.

View Article and Find Full Text PDF

The initial fine-tuning processes are crucial for successful bone regeneration, as they guide skeletal stem cells through progenitor differentiation toward osteo- or chondrogenic fate. While fate determination processes are well-documented, the mechanisms preceding progenitor commitment remain poorly understood. Here, we identified a transcription factor, Zfp260, as pivotal for stem cell maturation into progenitors and directing osteogenic differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!