Background. To investigate the climb stairs resistance exercise on nociception and axonal regeneration in the sciatic nerve of rats. Methods. 24 Wistar rats were divided: control group (CG-no injury), exercise group (EG-no injury with physical exercise), lesion group (LG-injury, but without exercise), and treated group (LEG-injury and physical exercise). LG and LEG were subjected to sciatic nerve compression with hemostat. From the 3rd day after injury began treatment with exercise, and after 22 days occurs the removal of a nerve fragment for morphological analysis. Results. Regarding allodynia, CG obtained values less than EG (p = 0.012) and larger than LG and LEG (p < 0.001). Histological results showed that CG and EG had normal appearance, as LG and LEG showed up with large amounts of inflammatory infiltration, degeneration and disruption of nerve fibers, and reduction of the myelin sheath; however LEG presented some regenerated fibers. From the morphometric data there were significant differences, for nerve fiber diameter, comparing CG with LG and LEG and comparing axon diameter and the thickness of the myelin of the CG to others. Conclusion. Climb stairs resistance exercise was not effective to speed up the regenerative process of axons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995321PMC
http://dx.doi.org/10.1155/2016/6487160DOI Listing

Publication Analysis

Top Keywords

sciatic nerve
12
wistar rats
8
exercise
8
climb stairs
8
stairs resistance
8
resistance exercise
8
physical exercise
8
nerve
6
leg
5
nociceptive neuronal
4

Similar Publications

Introduction: Moderate-to-severe obstructive sleep apnea (OSA) affects a large segment of the US population and is characterized by repetitive and reversible obstruction of the upper airway during sleep. Untreated OSA is associated with increased incidence of heart attack, stroke, and motor vehicle accidents due to sleepiness. Continuous positive airway pressure is often prescribed, but most patients with OSA are nonadherent.

View Article and Find Full Text PDF

Unveiling the molecular blueprint of SKP-SCs-mediated tissue engineering-enhanced neuroregeneration.

J Nanobiotechnology

December 2024

Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, P. R. China.

Peripheral nerve injury poses a significant challenge to the nervous system's regenerative capacity. We previously described a novel approach to construct a chitosan/silk fibroin nerve graft with skin-derived precursor-induced Schwann cells (SKP-SCs). This graft has been shown to promote sciatic nerve regeneration and functional restoration to a level comparable to that achieved by autologous nerve grafts, as evidenced by behavioral, histological, and electrophysiological assessments.

View Article and Find Full Text PDF

Background: Neuropathic pain (NeP) presents considerable challenges in terms of effective management and significantly impacts the quality of life for affected patients. The current treatment options for NeP are limited, highlighting the need for alternative therapeutic approaches. Dahuang Fuzi Decoction (DF), a formula from traditional Chinese medicine, has shown potential in relieving pain symptoms associated with various types of NeP.

View Article and Find Full Text PDF

Low expression of Frataxin might contribute to diabetic peripheral neuropathy in a mouse model.

Biochem Biophys Res Commun

December 2024

Yancheng Clinical College, Xuzhou Medical University, Yancheng, 224000, PR China. Electronic address:

Diabetes is one of the most prevalent metabolic disorders, and its incidence has been experiencing a steady annual rise in recent years. Diabetic peripheral neuropathy (DPN) represents the most frequent adverse complication, exerting a profound impact on the quality of life for those suffering from diabetes. The etiology of DPN is complex, including impaired mitochondrial function.

View Article and Find Full Text PDF

Schwann cells (SCs) are necessary for peripheral nerve regeneration due to their plasticity and trophic supply after sciatic nerve injury (SNI). However, the multiple adaptations of SCs are still poorly understood. This study explored the effects of transient axonal glycoprotein type-1 (TAG-1) on cell migration and neuropilin1 (NRP1) expression in SCs and examined the impact of TAG-1 on nerve regeneration in rats with SNI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!