Tankyrase-1 Ankyrin Repeats Form an Adaptable Binding Platform for Targets of ADP-Ribose Modification.

Structure

Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T1J4, Canada. Electronic address:

Published: October 2016

The poly(ADP-ribose) polymerase enzyme Tankyrase-1 (TNKS) regulates multiple cellular processes and interacts with diverse proteins using five ankyrin repeat clusters (ARCs). There are limited structural insights into functional roles of the multiple ARCs of TNKS. Here we present the ARC1-3 crystal structure and employ small-angle X-ray scattering (SAXS) to investigate solution conformations of the complete ankyrin repeat domain. Mutagenesis and binding studies using the bivalent TNKS binding domain of Axin1 demonstrate that only certain ARC combinations function together. The physical basis for these restrictions is explained by both rigid and flexible ankyrin repeat elements determined in our structural analysis. SAXS analysis is consistent with a dynamic ensemble of TNKS ankyrin repeat conformations modulated by Axin1 interaction. TNKS ankyrin repeat domain is thus an adaptable binding platform with structural features that can explain selectivity toward diverse proteins, and has implications for TNKS positioning of bound targets for poly(ADP-ribose) modification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2016.07.014DOI Listing

Publication Analysis

Top Keywords

ankyrin repeat
20
adaptable binding
8
binding platform
8
diverse proteins
8
repeat domain
8
tnks ankyrin
8
tnks
6
ankyrin
5
repeat
5
tankyrase-1 ankyrin
4

Similar Publications

DARPin-induced reactivation of p53 in HPV-positive cells.

Nat Struct Mol Biol

January 2025

Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.

Infection of cells with high-risk strains of the human papillomavirus (HPV) causes cancer in various types of epithelial tissue. HPV infections are responsible for ~4.5% of all cancers worldwide.

View Article and Find Full Text PDF

Background: An increasing body of evidence has linked fructose intake to colorectal cancer (CRC). African American (AA) adults consume greater quantities of fructose and are more likely to develop right-side colon cancer than European American (EA) adults.

Objective: We examined the hypothesis that fructose consumption leads to epigenomic and transcriptomic differences associated with CRC tumor biology.

View Article and Find Full Text PDF

Drought is a persistent and serious threat to crop yield and quality. The identification and functional characterization of drought tolerance-related genes is thus vital for efforts to support the genetic improvement of drought-tolerant crops. Barley is highly adaptable and renowned for its robust stress resistance, making it an ideal subject for efforts to explore genes related to drought tolerance.

View Article and Find Full Text PDF

DARPins as a novel tool to detect and degrade p73.

Cell Death Dis

December 2024

Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.

The concept of Targeted Protein Degradation (TPD) has been introduced as an attractive alternative to the development of classical inhibitors. TPD can extend the range of proteins that can be pharmacologically targeted beyond the classical targets for small molecule inhibitors, as a binding pocket is required but its occupancy does not need to lead to inhibition. The method is based on either small molecules that simultaneously bind to a protein of interest and to a cellular E3 ligase and bring them in close proximity (molecular glue) or a bi-functional molecule synthesized from the chemical linkage of a target protein-specific small molecule and one that binds to an E3 ligase (Proteolysis Targeting Chimeras (PROTAC)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!