Membrane raft domains and remodeling in aging brain.

Biochimie

UR AFPA (INRA USC 340, EA 3998), Équipe Biodisponibilité et Fonctionnalité des Lipides Alimentaires (BFLA), Université de Lorraine, Nancy, F-54000, France. Electronic address:

Published: November 2016

Lipids are the fundamental structural components of biological membranes. For a long time considered as simple barriers segregating aqueous compartments, membranes are now viewed as dynamic interfaces providing a molecular environment favorable to the activity of membrane-associated proteins. Interestingly, variations in membrane lipid composition, whether quantitative or qualitative, play a crucial role in regulation of membrane protein functionalities. Indeed, a variety of alterations in brain lipid composition have been associated with the processes of normal and pathological aging. Although not establishing a direct cause-and-effect relationship between these complex modifications in cerebral membranes and the process of cognitive decline, evidence shows that alterations in membrane lipid composition affect important physicochemical properties notably impacting the lateral organization of membranes, and thus microdomains. It has been suggested that preservation of microdomain functionality may represent an effective strategy for preventing or decelerating neuronal dysfunction and cerebral vulnerability, processes that are both aggravated by aging. The working hypothesis developed in this review proposes that preservation of membrane organization, for example, through nutritional supplementation of docosahexaenoic acid, could prevent disturbances in and preserve effective cerebral function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2016.08.014DOI Listing

Publication Analysis

Top Keywords

lipid composition
12
membrane lipid
8
membrane
5
membrane raft
4
raft domains
4
domains remodeling
4
remodeling aging
4
aging brain
4
brain lipids
4
lipids fundamental
4

Similar Publications

Small, obligately anaerobic strains 13CB8C, 13CB11C, 13CB18C and 13GAM1G were isolated from a faecal sample in a patient with Parkinson's disease with a history of duodenal resection. After conducting a comprehensive polyphasic taxonomic analysis including genomic analysis, we propose the establishment of one new genus and four new species. The novel bacteria are sp.

View Article and Find Full Text PDF

Atopic dermatitis (AD), also known as eczema, is a chronic or relapsing inflammatory skin disease characterized by repeated exacerbations and remissions. Here, we investigated the effects of squid phospholipids (PLs) extracted from Todarodes pacificus on AD. The composition of squid PLs was analyzed using thin-layer chromatography and high-performance liquid chromatography, and the effects of PLs on AD were investigated using a rat paw edema model and an AD-like mouse model (NC/Nga mice).

View Article and Find Full Text PDF

is an obligate intracellular bacterial pathogen that develops within a membrane-bound vacuole called an inclusion. Throughout its developmental cycle, modifies the inclusion membrane (IM) with type III secreted (T3S) membrane proteins, known as inclusion membrane proteins (Incs). Via the IM, manipulates the host cell to acquire lipids and nutrients necessary for its growth.

View Article and Find Full Text PDF

Introduction: Long-term fasting (LF) activates an adaptative response to switch metabolic fuels from food glucose to lipids stored in adipose tissues. The increase in free fatty acid (FFA) oxidation during fasting triggers health benefits. We questioned if the changes in lipid metabolism during LF could affect lipids in cell membranes in humans.

View Article and Find Full Text PDF

Sphingolipids are an essential lipid component of the skin barrier with alterations in skin sphingolipid composition associated with multiple skin disorders including psoriasis, atopic dermatitis, and ichthyosis. Contributions to skin sphingolipid abundance are not well characterized, thus the main method of modulating skin lipid levels is the topical application of creams rich with sphingolipids at the skin surface. Evidence that diet and gut microbiome function can alter skin biology proposes an intriguing potential for the modulation of skin lipid homeostasis through gut microbial metabolism, but potential mechanisms of action are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!