The immobilization of a copper calix[6]azacryptand funnel complex on gold-modified electrodes is reported. Two different methodologies are described. One is based on alkyne-terminated thiol self-assembled monolayers. The other relies on the electrografting of a calix[4]arene platform bearing diazonium functionalities at its large rim and carboxylic functions at its small rim, which is post-functionalized with alkyne moieties. In both cases, the CuAAC electroclick methodology proved to be the method of choice for grafting the calix[6]azacryptand onto the monolayers. The surface-immobilized complex was fully characterized by surface spectroscopies and electrochemistry in organic and aqueous solvents. The Cu complex displays a well-defined quasi-reversible system in cyclic voltammetry associated with the Cu(II)/Cu(I) redox process. Remarkably, this redox process triggers a powerful selective detection of primary alkylamines in water at a micromolar level, based on a cavitary recognition process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.6b05317 | DOI Listing |
Eur J Med Chem
February 2025
Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong, 528400, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Baiyun District, Guangzhou, Guangdong, 510515, China. Electronic address:
Nuclear receptor binding SET domain protein 2 (NSD2) is involved in various pathologic processes and is considered as an important target for cancer therapy. Due to alternative splicing, NSD2 has 3 isoforms: long, short and RE-IIBP. Although previous studies reported the degradation of PWWP1 domain-containing NSD2-long and short isoforms through PWWP1-binding molecules, the degradation of RE-IIBP which does not contain PWWP1 has been neglected to date.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
A palladium-catalyzed divergent reaction of primary benzamides using norbornene (NBE) derivatives as a controlled switch is reported. When NBE is used as a mediator, indanones are synthesized with moderate to good yields a Catellani reaction that involves sequential -C-H alkylation and -C-N bond cleavage annulation of primary benzamides. Employing norbornadiene (NBD) instead of NBE enables the assembly of -alkylamines by an intermolecular hydroamination reaction.
View Article and Find Full Text PDFCells
August 2024
Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
The P2Y receptor (P2YR), a G-coupled receptor, is a potential drug discovery target for various inflammatory and degenerative conditions. Antagonists have been shown to attenuate colitis, acute lung injury, etc. In the search for competitive antagonists, we have investigated the SAR of 3-nitro-2-(trifluoromethyl)-2-chromene derivatives, although high affinity is lacking.
View Article and Find Full Text PDFChem Sci
August 2024
Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
The development of methods for the assembly of secondary α-alkyl amines remains a central challenge to chemical synthesis because of their critical importance in modulating the physical properties of biologically active molecules. Despite decades of intensive research, chemists still rely on selective N-alkylation and carbonyl reductive amination to make most amine products. Here we report the further evolution of a carbonyl alkylative amination process that, for the first time, brings together primary amines, aldehydes and alkyl iodides in a visible-light-mediated multicomponent coupling reaction for the synthesis of a wide range of α-branched secondary alkylamines.
View Article and Find Full Text PDFNat Commun
July 2024
Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
Alkylamine structures represent one of the most functional and widely used in organic synthesis and drug design. However, the general methods for the functionalization of the shielded and deshielded alkyl radicals remain elusive. Here, we report a general deoxygenative amination protocol using alcohol-derived carbazates and nitrobenzene under electrochemical conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!