Dolphins are good bioindicators of the contamination status of marine ecosystems, since their dietary and habitat plasticity in both coastal and offshore ecotypes provide information on the trace elements levels originated from natural and anthropogenic sources. In this context, this study aimed to investigate provides mercury (Hg), selenium (Se) levels, trophic ecology and feeding environments of four small cetaceans (Tursiops truncatus, Steno bredanensis, Sotalia guianensis and Pontoporia blainvillei) inhabiting the central-northern coast of Rio de Janeiro State, southeastern Brazil. For the latter, δN and δC stable isotopes were used as indicators in this regard. Stable isotope values indicate that the four studied species have distinctive foraging habitats, coastal and least coastal, and occupy different trophic positions. The significant relationship found between muscle Hg and δN suggests that individual foraging preference remains relatively constant for the studied dolphin species over extended periods. The individual prey size and species are probably responsible for the differences found in Hg and Se concentrations in muscle tissue among all dolphin species. The vulnerable small coastal cetacean, P. blainvillei, which feeds on small teleost fish and squid, presented the lowest muscular Hg concentrations (less than 3.5 μg g dry wt.). Meanwhile, S. bredanensis is more likely to uptake large amounts of trace elements among the four dolphin species, due to its feeding habits mainly being large offshore fish that accumulate high amounts of trace elements in organs and tissues. Differences found between Hg concentrations in fetus-mother pairs were much higher in S. guianensis than in P. blainvillei, suggesting that maternal contribution of Hg via placenta was more significant for the former.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2016.08.088DOI Listing

Publication Analysis

Top Keywords

trace elements
12
dolphin species
12
mercury selenium
8
stable isotopes
8
small cetaceans
8
differences concentrations
8
amounts trace
8
species
5
selenium stable
4
small
4

Similar Publications

Physicochemical Characterization of Gallstone Surfaces to Predict Their Interaction with Salmonella Typhi.

Curr Microbiol

January 2025

Industrial and Surface Engineering Laboratory, Bioprocess and Biointerfaces Team, Department of Life Sciences, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco.

Salmonella Typhi can adhere to and build biofilms on the surface of gallstones causing abnormal gallbladder mucosa, which could lead to carcinogenesis. The surface physicochemical properties of microbial cells and materials have been shown to play a crucial role in adhesion. Therefore, the purpose of this study was to investigate, for the first time, the surface properties of nine gallstones and to evaluate the influence of these parameters on the theoretical adhesion of S.

View Article and Find Full Text PDF

Mechanism of microplastics in the reduction of cadmium toxicity in tomato.

Ecotoxicol Environ Saf

January 2025

College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:

Soil pollution by microplastics (MPs) and cadmium (Cd) poses significant threats to agricultural production, yet their combined toxicity and underlying mechanisms remain poorly understood. Here, we examined the effects of three types of MPs-polyethylene (PE), polyvinyl chloride (PVC) and polypropylene (PP)-with particle sizes of 150 μm and 10 μm, in combination with Cd stress (5 mg/kg) on tomato (Solanum lycopersicum L.) growth.

View Article and Find Full Text PDF

Ascorbic acid (AA) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of AA is harmful to humans. Therefore, the detection of Fe and AA is generally recognized to be meaningful.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a primary malignant neoplasm exhibiting a high mortality rate. Taxifolin is a naturally occurring flavonoid compound that exhibits a range of pharmacological properties. The effects of taxifolin on HCC remain largely unexplored.

View Article and Find Full Text PDF

Adsorption properties and mechanisms of Cd by co-pyrolysis composite material derived from peanut biochar and tailing waste.

Environ Geochem Health

January 2025

College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.

Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!