A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reading Out Olfactory Receptors: Feedforward Circuits Detect Odors in Mixtures without Demixing. | LitMetric

Reading Out Olfactory Receptors: Feedforward Circuits Detect Odors in Mixtures without Demixing.

Neuron

Center for Brain Science and Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138 USA. Electronic address:

Published: September 2016

The olfactory system, like other sensory systems, can detect specific stimuli of interest amidst complex, varying backgrounds. To gain insight into the neural mechanisms underlying this ability, we imaged responses of mouse olfactory bulb glomeruli to mixtures. We used this data to build a model of mixture responses that incorporated nonlinear interactions and trial-to-trial variability and explored potential decoding mechanisms that can mimic mouse performance when given glomerular responses as input. We find that a linear decoder with sparse weights could match mouse performance using just a small subset of the glomeruli (∼15). However, when such a decoder is trained only with single odors, it generalizes poorly to mixture stimuli due to nonlinear mixture responses. We show that mice similarly fail to generalize, suggesting that they learn this segregation task discriminatively by adjusting task-specific decision boundaries without taking advantage of a demixed representation of odors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5035545PMC
http://dx.doi.org/10.1016/j.neuron.2016.08.007DOI Listing

Publication Analysis

Top Keywords

mixture responses
8
mouse performance
8
reading olfactory
4
olfactory receptors
4
receptors feedforward
4
feedforward circuits
4
circuits detect
4
detect odors
4
odors mixtures
4
mixtures demixing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!