The Emerging Role of RNA as a Therapeutic Target for Small Molecules.

Cell Chem Biol

Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA. Electronic address:

Published: September 2016

Recent advances in understanding different RNAs and unique features of their biology have revealed a wealth of information. However, approaches to identify small molecules that target these newly discovered regulatory elements have been lacking. The application of new biochemical screening and design-based technologies, coupled with a resurgence of interest in phenotypic screening, has resulted in several compelling successes in targeting RNA. A number of recent advances suggest that achieving the long-standing goal of developing drug-like, biologically active small molecules that target RNA is possible. This review highlights advances and successes in approaches to targeting RNA with diverse small molecules, and the potential for these technologies to pave the way to new types of RNA-targeted therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5064864PMC
http://dx.doi.org/10.1016/j.chembiol.2016.05.021DOI Listing

Publication Analysis

Top Keywords

small molecules
16
molecules target
8
targeting rna
8
emerging role
4
rna
4
role rna
4
rna therapeutic
4
therapeutic target
4
small
4
target small
4

Similar Publications

Reline, which is composed of choline chloride and urea in a molar ratio of 1:2, is the first and most extensively studied deep eutectic solvent (DES). In certain applications, reline is blended with organic solvents, dimethyl sulfoxide (DMSO) in most cases, to gain improved properties. Therefore, it is crucial to have a profound understanding of the impact of DMSO on the dynamics and structures of the species in the binary mixtures.

View Article and Find Full Text PDF

Despite being studied for almost two centuries, aromaticity has always been a controversial concept. We previously proposed a unified aromatic rule for π-conjugated systems by two-dimensional (2D) superatomic-molecule theory, where benzenoid rings are treated as period 2 2D superatoms (3π-N, 4π-O, 5π-F, 6π-Ne) and, further, bond to form 2D superatomic molecules. Herein, to build a 2D periodic table, we further extend the theory to period 3 (7π-P, 8π-S, 9π-Cl, 10π-Ar) and period 1 (1π-H, 2π-He) elements.

View Article and Find Full Text PDF

Protein-Protein Interactions (PPIs) are a key interface between virus and host, and these interactions are important to both viral reprogramming of the host and to host restriction of viral infection. In particular, viral-host PPI networks can be used to further our understanding of the molecular mechanisms of tissue specificity, host range, and virulence. At higher scales, viral-host PPI screening could also be used to screen for small-molecule antivirals that interfere with essential viral-host interactions, or to explore how the PPI networks between interacting viral and host genomes co-evolve.

View Article and Find Full Text PDF

P2X receptors (P2XRs) are adenosine 5'-triphosphate (ATP)-gated ion channels comprising homomeric and heteromeric trimers of seven subtypes (P2X1-P2X7) that confer different rates of desensitization. The helical recoil model of P2XR desensitization proposes stability of the cytoplasmic cap sets the rate of desensitization, but timing of its formation is unclear for slow-desensitizing P2XRs. We report cryo-electron microscopy structures of full-length wild-type human P2X4 receptor in apo closed, antagonist-bound inhibited, and ATP-bound desensitized states.

View Article and Find Full Text PDF

Gas-Phase Scattering of Transition Metal Atoms Fe, Ir, and Pt with CH, O, and CO.

J Phys Chem A

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China.

Understanding the interactions between transition metal atoms and molecules is important for the study of various related chemical and physical processes. In this study, we have investigated collisions between iron (Fe), iridium (Ir), and platinum (Pt) and the small molecules CH, O, and CO using a crossed-beam and time-sliced ion velocity map imaging technique. Elastic collisions were observed in all cases, except for collisions of Pt with O and CO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!