A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Telencephalic-olfactory bulb ventricle wall organization in Austrolebias charrua: Cytoarchitecture, proliferation dynamics, neurogenesis and migration. | LitMetric

Telencephalic-olfactory bulb ventricle wall organization in Austrolebias charrua: Cytoarchitecture, proliferation dynamics, neurogenesis and migration.

Neuroscience

Departamento NCIC, Neuroanatomía Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, 11600 Montevideo, Uruguay; Neuroanatomía Comparada, Unidad Asociada a la Facultad de Ciencias, Universidad de la República (UdelaR), Iguá 4225, 11400 Montevideo, Uruguay. Electronic address:

Published: November 2016

Adult neurogenesis participates in fish olfaction sensitivity in response to environmental challenges. Therefore, we investigated if several populations of stem/progenitor cells that are retained in the olfactory bulbs (OB) may constitute different neurogenic niches that support growth and functional demands. By electron microscopy and combination cell proliferation and lineage markers, we found that the telencephalic ventricle wall (VW) at OB level of Austrolebias charrua fish presents three neurogenic niches (transitional 1, medial 2 and ventral 3). The main cellular types described in other vertebrate neurogenic niches were identified (transient amplifying cells, stem cells and migrating neuroblasts). However, elongated vimentin/BLBP+ radial glia were the predominant cells in transitional and ventral zones. Use of halogenated thymidine analogs chloro- and iodo-deoxyuridine administered at different experimental times showed that both regions have the highest cell proliferation and migration rates. Zone 1 migration was toward the OB and telencephalon, whereas in zone 3, migration was directed toward the OB rostral portion constituting the equivalent of the mammal rostral migratory band. Medial zone (MZ) has fewer proliferating non-migrant cells that are the putative stem cells as indicated by short and long proliferation assays as well as cell lineage markers. Sparse migration observed suggests MZ may collaborate with VW growth. Scanning electron microscopy evidenced that the whole VW has only monociliated cells with remarkable differences in cilium length among regions. In OB there are monociliated cells with dwarf cilium whereas ventral telencephalon shows long cilium. Summarizing, we identified three neurogenic niches that might serve different functional purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2016.08.045DOI Listing

Publication Analysis

Top Keywords

neurogenic niches
16
ventricle wall
8
austrolebias charrua
8
cells
8
electron microscopy
8
cell proliferation
8
lineage markers
8
three neurogenic
8
stem cells
8
zone migration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!