MiR-125b regulates SFRP5 expression to promote growth and activation of cardiac fibroblasts.

Cell Biol Int

Department of Cardiology, Yantai Yuhuangding Hospital, 20# Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, China.

Published: November 2016

Myocardial fibrosis (MF), which typically occurs after a myocardial infarction (MI), is a major factor involved in the process of ventricular remodeling and subsequent progression to heart failure. Current studies have found that various microRNAs (miRNAs), such as miR-125b, play an important role in this process. However, few studies have investigated the specific mechanism of miR-125b. Transfection of miR-125b mimics into cardiac fibroblasts (CFs) resulted in significantly increased expression of the myofibroblast marker alpha-smooth muscle actin (α-SMA) and vinculin by Western blot analysis, while transfection of miR-125b inhibitors resulted in the opposite effect. Analysis of putative CF target genes for miR-125b revealed that miR-125b specifically inhibits expression of secreted frizzled-related protein 5 (SFRP5). SFRP5 inhibited expression of α-SMA and collagen I and III in CFs, while miR-125b promoted the expression of these proteins. Cotransfection of the SFRP5 overexpression vector and miR-125b mimics did not result in significant upregulation of SFRP5 expression or downregulation of α-SMA and collagen I and III. Further analysis revealed that miR-125b promotes the proliferation and migration of CFs and inhibits their apoptosis, while SFRP5 exhibits the opposite effects. These results indicate that miR-125b can regulate SFRP5 expression and thus influence the growth and activation of CFs. Hence, this study provides important insight into possible approaches for the prevention and treatment of MF after an MI.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.10677DOI Listing

Publication Analysis

Top Keywords

sfrp5 expression
12
mir-125b
11
growth activation
8
cardiac fibroblasts
8
transfection mir-125b
8
mir-125b mimics
8
revealed mir-125b
8
α-sma collagen
8
collagen iii
8
sfrp5
7

Similar Publications

The mesenteric adipokine SFRP5 alleviated intestinal epithelial apoptosis improving barrier dysfunction in Crohn's disease.

iScience

December 2024

Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China.

The hypertrophic mesenteric adipose tissue (htMAT) of Crohn disease (CD) participates in inflammation through the expression of adipokines, but the exact mechanism of this action in the intestine is unknown. Here, we analyzed the expression of secreted frizzled-related protein 5 (SFRP5), an adipokine with cytoprotective effects, in htMAT and its role in CD. The results of this study revealed that the level of SFPR5 increased in the diseased MAT (htMAT) of CD patients and aggregated among intestinal epithelial cells in the diseased intestine and that it could ameliorate intestinal barrier dysfunction in tumor necrosis factor alpha (TNF-α)-stimulated colonic organoids and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced mice at least in part through the inhibition of Wnt5a-mediated apoptosis in epithelial cells.

View Article and Find Full Text PDF

This study aimed to investigate the expression, prognostic significance, methylation, and immune invasion levels of secreted frizzled-related proteins (SFRP1-5) in colorectal cancer (CRC). Additionally, the relationship between SFRP1/2 methylation and immune infiltration in CRC was explored. The expression of SFRP1-5 was analyzed using several databases, including GEO, TCGA, TIMER, STRING, and GEPIA.

View Article and Find Full Text PDF

Chondroprotective functions of neutrophil-derived extracellular vesicles by promoting the production of secreted frizzled-related protein 5 in cartilage.

Cell Commun Signal

November 2024

Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan.

Background: Osteoarthritis (OA) is the most common degenerative joint disease characterized by cartilage degradation and various degrees of inflammation in the synovium. Growing evidence highlights that neutrophil extracellular vesicles (EVs) play a protective role in arthritic joints by promoting the resolution of inflammation and the synthesis of proteoglycans in cartilage. However, this homeostatic function is dependent on the activation state of neutrophils and the surrounding environment/tissues.

View Article and Find Full Text PDF

The intramuscular oleic-to-stearic fatty acid ratio (C18:1n-9/C18:0) is an important indicator of the biosynthesis and desaturation of fatty acids in muscle. By using an RNA-Seq approach in muscle samples from 32 BC1_DU (25% Iberian and 75% Duroc) pigs with divergent values (high: H and low: L) of C18:1n-9/C18:0 fatty acids ratio, a total of 81 differentially expressed genes (DEGs) were identified. Functional analyses of DEGs indicate that mainly peroxisome proliferator-activated receptor signaling pathway (associated genes: PPARG, SCD, PLIN1, and FABP3) was overrepresented.

View Article and Find Full Text PDF

Secreted frizzled related protein 5 (SFRP5) is a recognized cardioprotective protein with diminished expression in atrial fibrillation (AF). This study investigates SFRP5's function in AF-related cardiac fibrosis and cardiomyocyte apoptosis, exploring the underlying dysregulation causes. Utilizing C57BL/6 mice, mouse cardiac fibroblasts (CFs), and HC-1 mouse atrial myocyte cell line, AF models were induced by angiotensin Ⅱ (Ang Ⅱ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!