In this study, the synthesis of boron dipyrromethene dyes containing mono, bis-2-naphthyloxyhexyloxy and 4-(benzyloxy)phenoxyhexyloxy groups has been reported. Boron dipyrromethene dyes were synthesized from the mono, bis-benzaldehyde derivatives with 2,4-dimethylpyrrole in dichloromethane in the presence of trifluoroacetic, 2,3-dichloro-5,6-dicyano-p-benzoquinon, triethyl amine and boron trifluoride diethyl etherate, respectively. Electrochemical characterization of boron dipyrromethene dyes were carried out with voltammetric measurements. Electrochemical studies show that boron dipyrromethene dyes containing mono, bis-2-naphthyloxyhexyloxy and 4-(benzyloxy)phenoxyhexyloxy groups have reversible one reduction potentials unlike irreversible one oxidation potentials. Graphical Abstract ᅟ.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-016-1921-1DOI Listing

Publication Analysis

Top Keywords

boron dipyrromethene
16
dipyrromethene dyes
16
dyes mono
12
mono bis-2-naphthyloxyhexyloxy
12
bis-2-naphthyloxyhexyloxy 4-benzyloxyphenoxyhexyloxy
12
4-benzyloxyphenoxyhexyloxy groups
12
dyes
5
boron
5
design synthesis
4
synthesis characterization
4

Similar Publications

Thiophene engineering of near-infrared D-π-A nano-photosensitizers for enhanced multiple phototheranostics and inhibition of tumor metastasis.

J Colloid Interface Sci

January 2025

Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 China. Electronic address:

Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) is widely used for cancer treatment because of its non-invasiveness, spatiotemporal controllability, and low side effects. However, the PTT and PDT capabilities of photosensitizers (PSs) compete so it's still a crucial challenge to simultaneously enhance the PDT and PTT capabilities of PSs. In this work, donor-π-acceptor (D-π-A)-based boron dipyrromethene (BODIPY) dyes were developed via molecular engineering and applied for enhanced phototherapy of triple-negative breast cancer.

View Article and Find Full Text PDF

NIR-II photo-accelerated polymer nanoparticles boost tumor immunotherapy via PD-L1 silencing and immunogenic cell death.

Bioact Mater

April 2025

School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Immune checkpoint blockade (ICB) therapy is a widely favored anti-tumor treatment, but it shows limited response to non-immunogenic "cold" tumors and suffers from drug resistance. Photodynamic therapy (PDT), as a powerful localized treatment approach, can convert a "cold tumor" into a "hot tumor" by inducing immunogenic cell death (ICD) in tumor cells, thereby enhancing tumor immunogenicity and promoting tumor immunotherapy. However, the effectiveness of PDT is largely hindered by the limited penetration depth into tumor tissues.

View Article and Find Full Text PDF

Phosphorus-containing fluorophores provide a versatile framework for tailoring photophysical properties, enabling the design of advanced fluorogenic materials for various applications. Boron dipyrromethene (BODIPY) and squaraine dyes are of interest due to their multifaceted modularity and synthetic accessibility. Incorporating phosphorus-based functional groups into BODIPY or squaraine scaffolds has been achieved through a plethora of synthetic methods, including post-dye assembly functionalization.

View Article and Find Full Text PDF

In this work, a multicomponent polymerization (MCP) approach involving bipyrroles, sulfonyl azides, and diynes was developed to afford a library of poly(bipyrrole-sulfonylimide)s (PPSIs) in high yields and molecular weights, which were further modified to form unique sulfur dioxide (SO) generators. Bipyrroles served as carbon-based nucleophiles to undergo Cu-catalyzed C-C coupling during the MCP. Upon post-MCP modification by transforming the bipyrrole unit to boron dipyrromethene (BODIPY) and the sulfonylimide moiety to sulfonamide, poly(BODIPY-sulfonamide)s (PBSAs) were obtained as potent anticancer therapeutic agents.

View Article and Find Full Text PDF

Enveloped viruses, such as flaviviruses and coronaviruses, are pathogens of significant medical concern that cause severe infections in humans. Some photosensitizers are known to possess virucidal activity against enveloped viruses, targeting their lipid bilayer. Here we report a series of halogenated difluoroboron-dipyrromethene (BODIPYs) photosensitizers with strong virus-inactivating activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!