Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Humans employ two distinct strategies to maintain balance during standing: the ankle and hip strategies. People with a high fall risk tend to alter their motion patterns during forward body tilting from a hip to an ankle strategy. Improved knowledge regarding how muscles control the center of mass (COM) during balancing would facilitate clinical assessment. The present study aimed to investigate individual muscle contributions to COM motion during forward body tilting with both ankle and hip strategies in 16 healthy adults. While standing, participants were instructed to oscillate their bodies and touch anterior and posterior targets at 0.5Hz. The anterior target was positioned at the sternum height level in a HIGH and 5% lower in a LOW condition to induce ankle and hip strategies, respectively. The muscle tension force was calculated from measured angle data using a two-dimensional, muscle-driven forward simulation model. Muscle contributions to COM acceleration during forward body tilting were calculated via induced acceleration analysis. Long hamstrings were found to increase upward-contributing action and forward COM acceleration in the LOW condition during forward tilting. In contrast, the contribution of the soleus to backward COM acceleration was reduced. These results imply that the contribution of hamstrings to forward COM acceleration is disadvantageous to fore-aft COM control and balance recovery during forward body tilting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2016.08.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!