An ultrasonic condition assisted phase transfer catalyzed radical polymerization of methyl methacrylate was investigated in an ethyl acetate/water two phase system at 60±1°C and 25kHz, 300W under inert atmosphere. The influence of monomer, initiator, catalyst and temperature, volume fraction of aqueous phase on the rate of polymerization was examined in detail. The reaction order was found to be unity for monomer, initiator and catalyst. Generally, the reaction rate was relatively fast in two phase system, when a catalytic amount of phase transfer catalyst was used. The combined approach, use of ultrasonic and PTC condition was significantly enhances the rate of polymerization. An ultrasonic and phase transfer catalyzed radical polymerization of methyl methacrylate has shown about three fold enhancements in the rate compared with silent polymerization of MMA using cetyltrimethylammonium bromide as PTC. The resultant kinetics was evaluated with silent polymerization and an important feature was discussed. The activation energy and other thermodynamic parameters were computed. Based on the obtained results an appropriate radical mechanism has been derived. TGA showed the polymer was stable up to 150°C. The FT-IR and DSC analysis validates the atactic nature of the obtained polymer. The XRD pattern reveals the amorphous nature of polymer was dominated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2016.08.028 | DOI Listing |
Unlabelled: The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40).
View Article and Find Full Text PDFWater Res X
May 2025
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
Emerging organophosphate flame retardants (E-OPFRs) are a new class of pollutants that have attracted increasing attention, but their bioaccumulation patterns and trophodynamic behaviors in aquatic food webs still need to be validated by comparison with legacy OPFRs (L-OPFRs). In this study, we simultaneously investigated the bioaccumulation, trophic transfer, and dietary exposure of 8 E-OPFRs and 10 L-OPFRs in a tropical estuarine food web from Hainan Island, China. Notably, the ΣL-OPFRs concentration (16.
View Article and Find Full Text PDFImmunooncol Technol
December 2024
Department of Biomedicine, University of Basel, Basel, Switzerland.
Background: Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TIL) is a personalized immunotherapy. The efficacy of TIL-ACT has been demonstrated prospectively in patients with advanced melanoma but is not limited to melanoma patients. Many patients are refractory to TIL-ACT, however, or their cancer becomes resistant.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan.
We studied the vibrational coherences during the ultrafast internal conversions (ICs) of pyrimidine nucleobases and -sides in aqueous solutions and the gas phase with an instrumental resolution of 14 fs. The coherence of the same ring-breathing vibrational mode with a frequency of 750 cm was observed. In the gas phase, the vibrational coherence was transferred during IC from the ππ* to the nπ* state, and it survived for approximately 1 ps.
View Article and Find Full Text PDFSmall
January 2025
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Developing single-particle nanocomposite with aqueous-phase orthogonal multicolor phosphorescence or multimodal luminescence holds great significance for optical coding, anti-counterfeiting encryption, bioimaging, and biosensing. However, it faces challenges such as a limited range of emission wavelengths and difficulties in controlling the synthesis process. In this work, a conjugate structure manipulation integrated luminophor confinement strategy is proposed to prepare carbon dots@upconversion nanoparticles (CDs@UCNPs) featuring aqueous-phase orthogonal multicolor room-temperature phosphorescence-upconversion luminescence (RTP-UCL) through wet-chemical synthetic methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!