The European Union (EU) has included tributyltin (TBT) and its compounds in the list of priority water pollutants. Quality standards demanded by the EU Water Framework Directive (WFD) require determination of TBT at so low concentration level that chemical analysis is still difficult and further research is needed to improve the sensitivity, the accuracy and the precision of existing methodologies. Within the frame of a joint research project "Traceable measurements for monitoring critical pollutants under the European Water Framework Directive" in the European Metrology Research Programme (EMRP), four metrological and designated institutes have developed a primary method to quantify TBT in natural water using liquid-liquid extraction (LLE) and species-specific isotope dilution mass spectrometry (SSIDMS). The procedure has been validated at the Environmental Quality Standard (EQS) level (0.2ngL(-1) as cation) and at the WFD-required limit of quantification (LOQ) (0.06ngL(-1) as cation). The LOQ of the methodology was 0.06ngL(-1) and the average measurement uncertainty at the LOQ was 36%, which agreed with WFD requirements. The analytical difficulties of the method, namely the presence of TBT in blanks and the sources of measurement uncertainties, as well as the interlaboratory comparison results are discussed in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2016.07.056DOI Listing

Publication Analysis

Top Keywords

water framework
12
natural water
8
environmental quality
8
quality standard
8
framework directive
8
water
6
tributyltin quantification
4
quantification natural
4
water environmental
4
standard level
4

Similar Publications

Water storage capacity and capacitance in trees regulate hydration levels, providing water reserves during drought. However, the effects of varying traits, tissue fractions and of different water pools on the allometry of branch-/sample-level properties have not been systematically investigated. We analyse the relationships between branch size and branch capacity and capacitance with respect to wood density, xylem vulnerability to embolism, and tissue fractions.

View Article and Find Full Text PDF

In last few decades, the agriculture sector is facing various type of crops diseases originated by crop pests. Among various crops the tomato plant is greatly affected by many pests such as aphids and whiteflies, which are badly decreasing tomato plant yield and effecting its growth. In last few years, various type of pesticides such as Neonicotinoids and Pyrethroids are employed with are badly effecting eco system and water bodies.

View Article and Find Full Text PDF

Understanding the electron pathway fluidity of Synechocystis in biophotovoltaics.

Plant J

January 2025

Systems Biotechnology Group, Department Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany.

Biophotovoltaics offers a promising low-carbon footprint approach to utilize solar energy. It aims to couple natural oxygenic photosynthetic electrons to an external electron sink. This lays the foundation for a potentially high light-to-energy efficiency of the Biophotovoltaic process.

View Article and Find Full Text PDF

Treatment methods in traditional Chinese medicine (TCM) are foundational to their theoretical, methodological, formulaic, and pharmacological systems, significantly contributing to syndrome differentiation and therapy. The principle of "promoting urination to regulate bowel movements" is a common therapeutic approach in TCM. The core concept is "promoting the dispersion and drainage of water dampness, regulating urination to relieve diarrhea," yet its scientific underpinning remains unclear.

View Article and Find Full Text PDF

Metal-free photocatalysts derived from earth-abundant elements have drawn significant attention owing to their ample supply for potential large-scale applications. However, it is still challenging to achieve highly efficient photocatalytic performance owing to their sluggish charge separation and lack of active catalytic sites. Herein, we designed and constructed a series of covalently bonded organic semiconductors to enhance water splitting and phenol degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!