Variation in prefrontal dopaminergic signaling mediated by D2 receptor has been implicated in cognitive phenotypes of schizophrenia, including working memory. Molecular cascades downstream of D2 receptor include a cAMP-dependent- and a cAMP-independent-pathway. Protein-Phosphatase-2A (PP2A) is a key partner of D2 receptor in cAMP-independent signaling. This enzyme comprises a regulatory subunit that is coded by PPP2R2B gene. Given the molecular relationship between PP2A and D2 signaling, we hypothesized genetic variation in PPP2R2B affecting mRNA expression of this gene in prefrontal cortex to be associated with prefrontal processing during working memory. In order to probe such a hypothesis we investigated SNPs associated with PPP2R2B expression in two independent samples of human postmortem prefrontal cortex. Then, we tested SNPs for which association was replicated as predictors of prefrontal activity during WM as probed by functional magnetic resonance (fMRI) in a sample of healthy humans. We found that a SNP associated with PPP2R2B expression (rs959627) predicted prefrontal activity during the N-Back working memory task. In particular, individuals carrying rs959627T allele, a condition associated with lower PPP2R2B expression in postmortem prefrontal cortex, showed greater activity in right inferior frontal gyrus (IFG) during N-Back compared to CC subjects. Furthermore, such an activity was negatively correlated with behavioral performance at the task. Consistently with previous studies, these findings suggest reduced right IFG efficiency during working memory processing in rs959627 T-carriers, as indexed by their greater need to activate this brain region in order to achieve similar levels of behavioral proficiency as compared to CC individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2016.08.054DOI Listing

Publication Analysis

Top Keywords

working memory
20
prefrontal cortex
12
ppp2r2b expression
12
genetic variation
8
prefrontal
8
memory processing
8
associated ppp2r2b
8
postmortem prefrontal
8
prefrontal activity
8
working
5

Similar Publications

Age bias in changes in finger dexterity based on brain activation and spinal motor nerve excitability induced by motor imagery practice.

Neuroscience

January 2025

Kansai University of Health Sciences, Faculty of Health Sciences, Department of Physical Therapy, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan; Graduate School of Kansai University of Health Sciences, Graduate School of Health Sciences, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan.

Elderly adults may have poorer recall ability than young adults and may not fully enjoy the effects of motor imagery. To understand the age bias of the effect of motor imagery on hand dexterity, we evaluated brain activation and spinal motor nerve excitability. Brain activation was evaluated from changes in oxygenated hemoglobin concentration, while spinal motor nerve excitability was evaluated from F-waves in eight young (mean age 21.

View Article and Find Full Text PDF

Air pollution is a critical global environmental issue, further exacerbated by rapid industrialization and urbanization. Accurate prediction of air pollutant concentrations is essential for effective pollution prevention and control measures. The complex nature of pollutant data is influenced by fluctuating meteorological conditions, diverse pollution sources, and propagation processes, underscores the crucial importance of the spatial and temporal feature extraction for accurately predicting air pollutant concentrations.

View Article and Find Full Text PDF

Visuospatial working memory (VSWM) is crucial for navigating complex environments and is known to decline with ageing. The Free-Movement Pattern (FMP) Y-maze, used in animal studies, provides a robust paradigm for assessing VSWM via analyses of individual differences in repeated alternating sequences of left (L) and right (R) responses (LRLR, etc.), the predominant search pattern in many species.

View Article and Find Full Text PDF

Introduction: Prolonged sitting can acutely reduce working memory (WM) in individuals with overweight and obesity (OW/OB) who show executive function deficits. Interrupting prolonged sitting with brief PA bouts may counter these effects. However, the benefits of such interventions on behavioral and neuroelectric indices of WM and whether neurocognitive responses are associated with postprandial glycemic responses in young and middle-aged adults with OW/OB remain unknown.

View Article and Find Full Text PDF

Projection-targeted photopharmacology reveals distinct anxiolytic roles for presynaptic mGluR2 in prefrontal- and insula-amygdala synapses.

Neuron

January 2025

Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA. Electronic address:

Dissecting how membrane receptors regulate neural circuits is critical for deciphering principles of neuromodulation and mechanisms of drug action. Here, we use a battery of optical approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) in the basolateral amygdala (BLA) controls anxiety-related behavior in mice. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of ventromedial prefrontal cortex (vmPFC)-BLA, but not posterior insular cortex (pIC)-BLA, connections produces a long-lasting decrease in spatial avoidance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!