Opioid system mediated anti-nociceptive effect of agomelatine in mice.

Life Sci

Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskişehir, Turkey. Electronic address:

Published: October 2016

Aims: This study was planned to examine the antinociceptive efficacy of agomelatine against acute mechanical, thermal, and chemical nociceptive stimuli, as well as to determine the opioid receptor subtypes mediating these effects.

Main Methods: Tail-clip, hot-plate, and acetic acid-induced writhing tests were performed to evaluate anti-nociceptive effect. Besides, possible effect of agomelatine on the motor coordination of animals was assessed with a Rota-rod test.

Key Findings: Agomelatine (40mg/kg and 60mg/kg) significantly prolonged the reaction time of mice in both the tail-clip and hot-plate tests, suggesting the antinociceptive activity is related to both spinal and supraspinal mechanisms. This drug also reduced the number of writhing behaviors indicating the presence of a peripherally mediated antinociceptive effect. Rota-rod testing displayed no notable effect on the motor activity of the animal supporting the conclusion that the observed antinociceptive effect is specific. The agomelatine-induced antinociceptive activity abrogated following pretreatment with naloxone (a non-selective opioid receptor antagonist, 5.48mg/kg, i.p.), which suggested the participation of opioid mechanisms to the antinociception. The possible contribution of μ, δ and ҡ subtypes of opioid receptors to the anti-nociceptive effect were evaluated using naloxonazine (7mg/kg, s.c.), naltrindole (0.99mg/kg, i.p.), and nor-binaltorphimine (1.03mg/kg, i.p.), respectively. Pretreatments using these antagonists abolished the antinociceptive activity of agomelatine in all of the nociceptive test paradigms used, which pointed out that μ, δ, and ҡ opioid receptors participated to the action of agomelatine on pain.

Significance: These results demonstrated the therapeutic potential of agomelatine in the treatment of pain disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2016.08.031DOI Listing

Publication Analysis

Top Keywords

antinociceptive activity
12
anti-nociceptive agomelatine
8
opioid receptor
8
tail-clip hot-plate
8
opioid receptors
8
agomelatine
7
opioid
6
antinociceptive
6
opioid system
4
system mediated
4

Similar Publications

A comprehensive review of the neurological effects of anethole.

IBRO Neurosci Rep

June 2025

Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.

Since ancient times many countries have employed medicinal plants as part of traditional medicine. Anethole is a substance found in various plants and has two isomers, cis-anethole (CA) and trans-anethole (TA). Currently, the food industry extensively use anethole as an aromatic and flavoring component.

View Article and Find Full Text PDF

Introduction: Ocular pain is a common complaint to eye care providers, associated with a variety of ocular conditions, among which dry eye disease (DED) is affecting millions of people worldwide. Despite being highly prevalent, ocular pain is not managed adequately in the clinic.

Objectives: The aim of this study was to investigate the analgesic potential of neurokinin-1 receptor (NK1R) antagonism in DED.

View Article and Find Full Text PDF

The serotonergic raphe magnus (RMg) and dorsal raphe (DR) nuclei are crucial pain-regulating structures, which nociceptive activity is shown to be altered in gut pathology, but the underlying neuroplastic changes remain unclear. Considering the importance of 5-HT1A receptors in modulating both pain and raphe neuronal activity, in this study, we aimed to determine whether 5-HT1A-dependent visceral and somatic nociceptive processing within the RMg and DR is modified in postcolitis conditions. In anaesthetised male Wistar rats, healthy control and recovered from TNBS-induced colitis, the microelectrode recordings of RMg and DR neuron responses to noxious colorectal distension (CRD) or tail squeezing (TS) were performed prior and after intravenous administration of 5-HT1A agonist, buspirone.

View Article and Find Full Text PDF

Behavioral assessment to evaluate the analgesic and anti-inflammatory effects of Fagonia bruguieri var. laxa boiss by targeting pro-inflammatory cytokines and prostaglandin pathways.

J Ethnopharmacol

January 2025

College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, Guangdong, China; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand. Electronic address:

Ethnopharmacological Relevance: Fagonia bruguieri var. laxa Boiss., also known as Dhamansa or Dhamaran, is a well-known xerophyte traditionally used for managing pain, inflammation, fever, and related disease conditions.

View Article and Find Full Text PDF

Recommended Opioid Receptor Tool Compounds: Comparative for Receptor Selectivity Profiles and for Pharmacological Antinociceptive Profiles.

ACS Pharmacol Transl Sci

January 2025

Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States.

Opioid agonist ligands bind opioid receptors and stimulate downstream signaling cascades for various biological processes including pain and reward. Historically, before cloning the receptors, muscle contraction assays using isolated organ tissues were used followed by radiolabel ligand binding assays on native tissues. Upon cloning of the opioid G protein-coupled receptors (GPCRs), cell assays using transfected opioid receptor DNA plasmids became the standard practice including S-GTPγS functional and cAMP based assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!