Perilla Oil Reduces Fatty Streak Formation at Aortic Sinus via Attenuation of Plasma Lipids and Regulation of Nitric Oxide Synthase in ApoE KO Mice.

Lipids

Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.

Published: October 2016

Consumption of n-3 polyunsaturated fatty acids (PUFA) is associated with a reduced incidence of atherosclerosis. Perilla oil (PO) is a vegetable oil rich in α-linolenic acid (ALA), an n-3 PUFA. In this study, antiatherogenic effects and related mechanisms of PO were investigated in atherosclerotic mice. Apolipoprotein E knockout (ApoE KO) mice (male, n = 27) were fed high-cholesterol and high-fat diets containing 10 % w/w lard (LD), PO, or sunflower oil (SO) for 10 weeks. Plasma triglyceride, total cholesterol, and low-density lipoprotein cholesterol concentrations reduced in the PO and SO groups compared to the concentrations in the LD group (P < 0.05). The PO group showed reduced fatty streak lesion size at the aortic sinus (P < 0.05) compared to the sizes in the LD and SO groups. A morphometric analysis showed enhancement of endothelial nitric oxide synthase expression and reduction of inducible nitric oxide synthase expression in the PO group compared to that in the LD group (P < 0.05). Furthermore, aortic protein expression of intercellular cell adhesion molecule 1 and vascular cell adhesion molecule 1 was diminished in the PO group compared to that in the LD and SO groups (P < 0.05). These findings suggested that PO inhibited the development of aortic atherosclerosis by improving the plasma lipid profile, regulating nitric oxide synthase, and suppressing the vascular inflammatory response in the aorta of ApoE KO mice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11745-016-4188-zDOI Listing

Publication Analysis

Top Keywords

perilla oil
8
apoe mice
8
oil reduces
4
reduces fatty
4
fatty streak
4
streak formation
4
formation aortic
4
aortic sinus
4
sinus attenuation
4
attenuation plasma
4

Similar Publications

Our previous study demonstrated that γ-cyclodextrin (γ-CD)-perilla oil inclusion complexes increase plasma α-linolenic acid and eicosapentaenoic acid levels in healthy rats without adverse effects. The present study examined the effects of perilla oil, γ-CD, and their inclusion complexes on rats fed cholic acid (CA) to mimic the elevated gastrointestinal 12-hydroxylated (12OH) bile acid levels in high-fat diet-fed rats. Rats fed CA (CA group) tended to have higher AST, ALT, plasma total cholesterol (T-CHO), and triglyceride (TG) levels compared to controls fed a standard diet without CA.

View Article and Find Full Text PDF

Association of Metabolic Diseases and Moderate Fat Intake with Myocardial Infarction Risk.

Nutrients

December 2024

Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 20 Hoseoro97bungil, BaeBang-Yup, Asan 31499, Republic of Korea.

Background: Myocardial infarction (MI) can range from mild to severe cardiovascular events and typically develops through complex interactions between genetic and lifestyle factors.

Objectives: We aimed to understand the genetic predisposition associated with MI through genetic correlation, colocalization analysis, and cells' gene expression values to develop more effective prevention and treatment strategies to reduce its burden.

Methods: A polygenic risk score (PRS) was employed to estimate the genetic risk for MI and to analyze the dietary interactions with PRS that affect MI risk in adults over 45 years ( = 58,701).

View Article and Find Full Text PDF

The proper encapsulation of liposoluble tea polyphenols (LTP) is expected to better protect oil system. Chitosan hydrochloride-carboxymethyl starch (CHC-CMS) nanoparticles-based Pickering emulsions and hydroxypropyl methylcellulose/sodium citrate (HPMC/SC) microporous film were combined to embed and control-release LTP. With the CHC:CMS ratio varied from 1:0.

View Article and Find Full Text PDF

The present investigation explores into the influence of dietary nutrients, particularly alpha-linolenic acid (ALA), a plant-derived omega-3 fatty acid abundant in perilla seed oil (PSO), on the development of colitis-associated colorectal cancer (CRC). The study employs a mouse model to scrutinize the effects of ALA-rich PSO in the context of inflammation-driven CRC. Perilla seeds were subjected to oil extraction, and the nutritional composition of the obtained oil was analysed.

View Article and Find Full Text PDF

Perilla Seed Oil and Protein: Composition, Health Benefits, and Potential Applications in Functional Foods.

Molecules

November 2024

Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China.

Perilla () seeds are emerging as a valuable resource for functional foods and medicines owing to their rich oil and protein content with diverse nutritional and health benefits. Perilla seed oil (PSO) possesses a high level of a-linolenic acid (ALA), a favorable ratio of unsaturated to saturated fatty acids, and other active ingredients such as tocopherols and phytosterols, which contribute to its antioxidant, anti-inflammatory, and cardiovascular protective effects. The balanced amino acid ratio and good functional properties of perilla seed protein make it suitable for a variety of food applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!