Reconstitution of the Cytoplasmic Regulation of the Wnt Signaling Pathway Using Xenopus Egg Extracts.

Methods Mol Biol

Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University School of Medicine, PMB 407935 U-3218, Medical Research Building III, Nashville, TN, 37240, USA.

Published: January 2018

AI Article Synopsis

  • The Wnt signaling pathway's activation is primarily controlled by the regulation of β-catenin turnover.
  • In early embryos of Xenopus laevis, all pathway components are present, and egg extracts can mimic various biological processes.
  • This study presents a method to analyze β-catenin degradation using radiolabeled and luciferase-fusion proteins, highlighting the role of Wnt pathway components and small molecules in regulating β-catenin levels.

Article Abstract

The regulation of β-catenin turnover is the central mechanism governing activation of the Wnt signaling pathway. All components of the pathway are present in the early embryo of Xenopus laevis, and Xenopus egg extracts have been used to recapitulate complex biological reactions such as microtubule dynamics, DNA replication, chromatin assembly, and phases of the cell cycle. Herein, we describe a biochemical method for analyzing β-catenin degradation using radiolabeled and luciferase-fusion proteins in Xenopus egg extracts. We show that in such a biochemical system, cytoplasmic β-catenin degradation is regulated by soluble components of the Wnt pathway as well as small molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5567996PMC
http://dx.doi.org/10.1007/978-1-4939-6393-5_11DOI Listing

Publication Analysis

Top Keywords

xenopus egg
12
egg extracts
12
wnt signaling
8
signaling pathway
8
β-catenin degradation
8
reconstitution cytoplasmic
4
cytoplasmic regulation
4
regulation wnt
4
pathway
4
xenopus
4

Similar Publications

TRPA1 is a homotetrameric non-selective calcium-permeable channel. It contributes to chemical and temperature sensitivity, acute pain sensation, and development of inflammation. HCIQ2c1 is a peptide from the sea anemone that inhibits serine proteases.

View Article and Find Full Text PDF

Imaging-Based Quantitative Assessment of Biomolecular Condensates in vitro and in Cells.

J Biol Chem

December 2024

European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. Electronic address:

The formation of biomolecular condensates contributes to intracellular compartmentalization, and plays an important role in many cellular processes. The characterization of condensates is however challenging, requiring advanced biophysical or biochemical methods that are often less suitable for in vivo studies. A particular need for easily accessible yet thorough methods that enable the characterization of condensates across different experimental systems thus remains.

View Article and Find Full Text PDF

Interaction of DDB1 with NBS1 in a DNA Damage Checkpoint Pathway.

Int J Mol Sci

December 2024

Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea.

Various DNA damage checkpoint control mechanisms in eukaryotic cells help maintain genomic integrity. Among these, NBS1, a key component of the MRE11-RAD50-NBS1 (MRN) complex, is an essential protein involved in the DNA damage response (DDR). In this study, we discovered that DNA damage-binding protein 1 (DDB1) interacts with NBS1.

View Article and Find Full Text PDF

Protein Structural Modeling and Transport Thermodynamics Reveal That Plant Cation-Chloride Cotransporters Mediate Potassium-Chloride Symport.

Int J Mol Sci

December 2024

School of Agriculture, Food and Wine, Waite Research Institute, Faculty of Sciences, Engineering and Technology, University of Adelaide, Waite Campus Precinct, Glen Osmond, Adelaide, SA 5064, Australia.

Plant cation-chloride cotransporters (CCCs) are proposed to be Na-K-2Cl transporting membrane proteins, although evolutionarily, they associate more closely with K-Cl cotransporters (KCCs). Here, we investigated grapevine ( L.) VvCCC using 3D protein modeling, bioinformatics, and electrophysiology with a heterologously expressed protein.

View Article and Find Full Text PDF
Article Synopsis
  • * EAAT2 dysfunction is linked to several neurodegenerative diseases, including Alzheimer's and Parkinson's, with specific mutations in LRRK2, particularly Gly2019Ser, reducing EAAT2 expression.
  • * This study reveals that LRRK2 is essential for the stability and function of EAAT2, suggesting its role in preventing neuronal damage from excessive excitatory signals, but does not affect the function of other NTTs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!