Amyloid Beta Influences Vascular Smooth Muscle Contractility and Mechanoadaptation.

J Biomech Eng

Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 554555 e-mail:

Published: November 2016

Amyloid beta accumulation in neuronal and cerebrovascular tissue is a key precursor to development of Alzheimer's disease and can result in neurodegeneration. While its persistence in Alzheimer's cases is well-studied, amyloid beta's direct effect on vascular function is unclear. Here, we measured the effect of amyloid beta treatment on vascular smooth muscle cell functional contractility and modeled the mechanoadaptive growth and remodeling response to these functional perturbations. We found that the amyloid beta 1-42 isoform induced a reduction in vascular smooth muscle cell mechanical output and reduced response to vasocontractile cues. These data were used to develop a thin-walled constrained mixture arterial model that suggests vessel growth, and remodeling in response to amyloid betamediated alteration of smooth muscle function leads to decreased ability of cerebrovascular vessels to vasodilate. These findings provide a possible explanation for the vascular injury and malfunction often associated with the development of neurodegeneration in Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4034560DOI Listing

Publication Analysis

Top Keywords

amyloid beta
16
smooth muscle
16
vascular smooth
12
alzheimer's disease
8
muscle cell
8
growth remodeling
8
remodeling response
8
amyloid
6
vascular
5
beta influences
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!