Evidence suggests that mechanical load is related to structural destruction of disk annulus fibrosus (AF) either in adult disk degeneration or in child disk acute injury. Both biochemical and biomechanical properties are different between immature and mature disks. However, the effects of mechanical compression on immature AF are not fully clear. This study was to investigate the effects of a relatively wide range of dynamic compressive frequency on matrix homeostasis within the immature AF. Immature disks from pig (3-4 months) were randomly assigned into the control group (non-compression) and compression groups (0.1, 0.5, 1.0, 3.0 and 5.0 Hz). All disks were bioreactor-cultured for 7 days. AF matrix production was evaluated by histology, gene expression, glycosaminoglycan (GAG) content, hydroxyproline (HYP) content and immunohistochemistry. Generally, no obvious difference was found in HE staining between control group and compression groups. However, alcian blue staining indicated proteoglycan content in the 5.0-Hz group was decreased compared with the control group and other compression groups. Similarly, a catabolic remodeling gene expression profile with the down-regulated matrix genes (aggrecan, collagen I and collagen II) and tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-3) and the up-regulated matrix catabolic enzymes (ADAMTS-4 and MMP-3) was found in the 5.0-Hz group. Further analysis indicated that GAG content, HYP content and aggrecan protein deposition were also decreased in the 5.0-Hz group. Hence, we concluded that matrix homeostasis within the immature AF was compressive frequency dependent, and the relatively higher frequency (5.0 Hz) is unfavorable for matrix production within the immature AF. These findings will contribute to further understanding of the relationship between mechanical compression and immature AF biosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10237-016-0823-0 | DOI Listing |
FEBS J
December 2024
Department of Genetics and Cell Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, The Netherlands.
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) progressing to metabolic dysfunction-associated steatohepatitis (MASH), characterized by hepatic inflammation, has significantly increased in recent years due to unhealthy dietary practices and sedentary lifestyles. Cathepsin D (CTSD), a lysosomal protease involved in lipid homeostasis, is linked to abnormal lipid metabolism and inflammation in MASH. Although primarily intracellular, CTSD can be secreted extracellularly.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China. Electronic address:
Adv Sci (Weinh)
December 2024
Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
Low back pain (LBP) caused by nucleus pulposus degeneration and calcification leads to great economic and social burden worldwide. Unexpectedly, no previous studies have demonstrated the association and the underlying mechanism between nucleus pulposus tissue degeneration and calcification formation. Secreted Phosphoprotein 1 (SPP1) exerts crucial functions in bone matrix mineralization and calcium deposition.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
Silicosis is a fatal occupational pulmonary disease that is characterized by irreversible replacement of lung parenchyma by aberrant Exracellular matrix (ECM). Metabolic reprogramming is a crucial mechanism for fibrosis. However, how the metabolic rewiring shifts the ECM homeostasis toward overaccumulation remains unclear.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
Macrophages are versatile myeloid leukocytes with flexible cellular states to perform diverse tissue functions beyond immunity. This plasticity is however often hijacked by diseases to promote pathology. Scanning kinetics of macrophage states by single-cell transcriptomics and flow cytometry, we observed atopic dermatitis drastically exhausted a resident subtype S1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!